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ABSTRACT: We study theories with SU(2|4) symmetry, which include the plane wave
matrix model, 2+ 1 SYM on R x S? and N' = 4 SYM on R x S3/Z;. All these theories
possess many vacua. From Lin-Maldacena’s method which gives the gravity dual of each
vacuum, it is predicted that the theory around each vacuum of 2 +1 SYM on R x S?
and N' = 4 SYM on R x S3/Z;, is embedded in the plane wave matrix model. We show
this directly on the gauge theory side. We clearly reveal relationships among the spherical
harmonics on S2, the monopole harmonics and the harmonics on fuzzy spheres. We extend
the compactification (the T-duality) in matrix models a la Taylor to that on spheres.
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1. Introduction

The gauge/gravity (string) correspondence is one of the most important concepts in study-
ing nonperturbative aspects of string theory and gauge theories. An exhaustively inves-
tigated example is the AdS/CFT correspondence []-f]. Recently, Lin and Maldacena
proposed the gauge/gravity correspondence for theories with SU(2|4) symmetry [, which
include on the gauge theory side the plane wave matrix model (PWMM) [{], 2 + 1 su-
per Yang Mills on R x S? (SYMpyg2) [B] and N = 4 super Yang Mills on R x S3/Z;,
(SYMpyg3/7,). These theories share the common feature that they have many vacua, a
mass gap and a discrete energy spectrum. Lin and Maldacena developed a unified method
for providing the gravity dual of each vacuum of these theories. This method is an extension
of the so-called bubbling AdS geometry [f].

From Lin-Maldacena’s method, it is predicted that the theory around each vacuum of
SYMpy g2 and SYMpgy g3/7, is embedded in PWMM. In this paper, we prove this prediction
for every vacuum of SYMp, g2 and the trivial vacuum of SYMpg, g3/7, . Our results do not
only serve as a nontrivial check of the gauge/gravity correspondence for the theories with
SU(2]4) symmetry, but they are also interesting in the following aspects. First, we extend
the compactification (the T-duality) in matrix models a la Taylor [f] to that on spheres.
We realize S3/Z) as a U(1) bundle on S? in matrices. Second, we clearly reveal relation-
ships among various spherical harmonics: the spherical harmonics on S2, the monopole
harmonics developed by Wu, Yang and others [J—[[J and the harmonics on a set of con-
centric fuzzy spheres with different radii [LJ-[lJ]. We give an alternative understanding
and a generalization of topologically nontrivial configurations and their topological charges
on fuzzy spheres studied in [I§-R{]. Our results would shed light on problems of de-
scribing curved space [RI] and topological invariants in matrix models 23-P4]. In what
follows, we review known facts on the gauge theory side and the gravity side of the theo-
ries with SU(2|4) symmetry as well as describe our strategy and the organization of this
paper.

In [H, PWMM, SYMp,g2 and SYMpyg3/7, were defined by truncations of N =4
SYM on R x S% (SYMpygs) as follows. SYMp,gs has the superconformal symmetry
SU(2,2|4), whose bosonic subgroup is SO(2,4) x SO(6), where SO(2,4) is the conformal
group in 4 dimensions and SO(6) is the R-symmetry. SO(2,4) has a subgroup SO(4)
that is the isometry of the S® on which the theory is defined. SO(4) is identified with
SU(2) x SU(2), where we have marked one of two SU(2)’s with a tilde to focus on it.
The above theories are obtained by dividing the original SYMgy g3 by subgroups of S~U(2).
Dividing it by full SU(2) gives rise to PWMM. Indeed this fact was first found in [23].!
Dividing SYMp, g3 by Zj, gives rise to SYMp, g3/7, . In a coordinate system of S3 defined
in appendix A, this corresponds to making an identification (0, ¢,v) ~ (6, ¢, ¥ + 4%) The
k — oo limit of SYMpgy g3,z is nothing but SYMg, 2. That is, SYMp, g2 is obtained

We make a remark on a relation of PWMM with a supersymmetric quantum mechanics that is given
by the dimensional reduction of 10D A =1 SYM to 1 + 0 dimensions. General mass deformation of this
quantum mechanics which preserves all supersymmetries was studied in [@], and it was recently shown in
[@] that the deformation is unique and gives PWMM.



by dividing SYMp, g3 by U(1), in other words, by dimensionally reducing SYMp, g3 or
SYMpy53/z, in the ¢ direction. In [, the trivial vacuum of SYMp, g2 was obtained by
removing fuzziness of fuzzy spheres in a vacuum of PWMM. By viewing this procedure
inversely, one finds that PWMM is obtained as a dimensional reduction of SYMp, g2. It
can be said that we achieve ‘inverse’ of these dimensional reductions in this paper, keeping
the philosophy of [B§] in mind: we obtain SYMRgy 53,7, from SYMp, g2 and SYMp, g2 from
PWMM. In section P.J, we review these dimensional reductions.

The vacua of PWMM are characterized by configuration of concentric membrane fuzzy
spheres [[f]. The vacua of SYMp, g2 are labeled by monopole charges and unbroken gauge
group [B, @]. The vacua of SYMp, gs /z, are parameterized by the holonomy along nontrivial
generator of m1(S/Z;) [H]. In section R.3, we review these facts, and we clarify correspon-
dence between the holonomy parameterizing the vacua of SYMp, g3/7, with k — co and
the monopole charges and the unbroken gauge group labeling the vacua of SYMpy g2.

On the gravity side, Lin and Maldacena reduced the problem of finding a supergravity
solution dual to each vacuum of the above theories to the problem of finding an axially
symmetric solution to the 3-dimensional Laplace equation for the electrostatic potential,
where the boundary condition involves charged conducting disks and a background po-
tential. Each theory is specified by a background potential and each vacuum is specified
by a configuration of charged conducting disks. In section B.1], we review Lin-Maldacena’s
method and the one-to-one correspondences between the configurations of charged conduct-
ing disks and the vacua. In particular, by using the correspondence described in section P.2,
we clarify the one-to-one correspondence between the configurations of charged conduct-
ing disks and the monopole charges and the unbroken gauge group labeling the vacua of
SYMpgyg2.

In section B.3, from the one-to-one correspondences between the configurations of
charged conducting disks and the vacua, we obtain the following two predictions about
relations between the vacua of different gauge theories: if the gauge/gravity correspon-
dence for the theories with SU(2|4) symmetry is valid, 1) the theory around each vacuum of
SYMpgy g2 is embedded in PWMM and 2) the theory around each vacuum of SYMp, g3 /7, is
embedded in SYMp, g2. More precisely, 1) the theory around each vacuum of SYMp,, g2 is
equivalent to the theory around a certain vacuum of PWMM and 2) the theory around each
vacuum of SYMp, g3/7, is equivalent to the theory around a certain vacuum of SYMpg, g2
with a periodicity imposed. In [f], the prediction 1) for the trivial vacuum of SYMp, g» was
already shown as mentioned above, and its consistency with the gravity duals was recently
shown in [R9]. The prediction 1) for some nontrivial vacua of SYMpg, g2 was also suggested
in [fi, BJ]. We give a complete proof of the prediction 1) for generic nontrivial vacua of
SYMpy g2 in this paper. Combining the predictions 1) and 2) leads to a remarkable state-
ment that the theory around every vacuum of SYMpg, g3/7, and SYMp, g2 is embedded in
PWMM.

In order to prove the predictions, we make harmonic expansions for the theories around
various vacua. We use the spherical harmonics on S®, the monopole harmonics on S?
and the harmonics on a set of fuzzy spheres with different radii, which we call the fuzzy

sphere harmonics. In section [, as a preparation for the proofs, we describe properties of



these harmonics. In section [E.1, we recall the properties of the spherical harmonics on S3
summarized in [B1] and add some new results. In section [l.9, we generalize the results on
the monopole harmonics in [[]-[[Z] and reveal relationship between the monopole harmonics
and the spherical harmonics on $3. In section .3, we study the fuzzy sphere harmonics,
which is an appropriate basis for the vector space of rectangular matrices [[3—[5. We
further develop the works [[[3—[L5): we consider general spin S fuzzy sphere harmonics and
derive various formula about them, and furthermore we clearly reveal their relationship
with the monopole harmonics. It is well known [B3-B4] that a basis for the vector space
of square matrices is the harmonics on a fuzzy sphere and is regarded as a regularization
of the ordinary spherical harmonics on S?, where the size of matrices plays a role of an
ultraviolet cut-off for the angular momentum. Analogously, a basis for the vector space
of rectangular matrices is the fuzzy sphere harmonics and is regarded as a regularization
of the monopole harmonics, where the size of matrices plays a role of an ultraviolet cut-
off while a half of the difference between the numbers of raws and columns is fixed and
identified with the monopole charge.

By using the results in sections 4.2 and 4.3, we prove the prediction 1) in section 5.1
In section p.9, we comment on a relation of our result in section f.1] with the works [[[9, BJ].
In section B.1], by using the results in sections 4.1 and 4.2 and the mode expansion around
the trivial vacuum of SYMp, g3,7, performed in B1], we prove the prediction 2) for the
trivial vacuum of SYMpgy g3/7, . Following the suggestion given by the gravity side, we
consider a configuration of matrices in SYMp, g2 with a periodicity and recover the v
direction by ‘T-duality’. This is an extension of the compactification (the T-duality) in
matrix models a la Taylor to that on spheres, where S3/Z;, is realized as a nontrivial S*
fibration over S? in matrices rather than a direct product. In section 6.3, we combine the
predictions 1) and 2) and make some comments on construction of S% in terms of three
matrices.

Section [] is devoted to summary and discussion. Some details are gathered in appen-
dices.

2. Theories with SU(2|4) symmetry

In this section, we review the gauge theory side of the theories with SU(2|4) symmetry with
some new insights. In section R.1, starting with SYMp, gs or SYMp, g3 /7,,» We first obtain
SYMp, g2 by a dimensional reduction. After rewriting it using a 3-dimensional notation,
we again make a dimensional reduction for it to obtain PWMM. We fix our notation in
the above process. In section P.9, we classify vacua of the theories with SU(2|4) symmetry.
In particular, we clarify correspondence between the vacua of SYMp, g2 and the vacua of
SYMpy 53,7, with the k — oo limit.

2.1 Dimensional reductions from A =4 SYM on R x 53

We start with SYMp, gs [B§—[]. Here the gauge group is U(N) and the radius of $3

is fixed to % Borrowing the ten-dimensional notation, we can write down the action as



follows:

1 dQls 1 y 1 12y
S =—5— [ dt—=Tr (| ——FpF* — =D X, D*X,, — —RX,
e RS/ (u/2)? ( e P

|~ 1< 1
—%)\F“Da)\ — AL (X, A] + Z[Xm,XnP) ., (2.1)
where a and b are the (3+1)-dimensional local Lorentz indices and run from 0 to 3, and m
runs from 4 to 9. I'* and ' are the 10-dimensional gamma matrices, which satisfy

{re, 18y = 2% {I™ ™} = 20™", (2.2)

where 7% = diag(—1,1,1,1). X is the Majorana-Weyl spinor in 10 dimensions, which
satisfies

CioAT =\, THA =), (2.3)

where Cg is the charge conjugation matrix. R is the scalar curvature of S% which is equal
2
to §2& The field strength and the covariant derivatives take the form

Fab = VaAAb - vbAa - i[Aaa Ab]a
DoXon = VaXm — i[Aa, Xim], Da) = Vo — i[Ag, A, (2.4)

where
& 1 C
VaAp = el (0udy +wp “Ac); VaXim = 40, Xm, Vo =el(Ou\+ sz o). (2.5)

In appendix A, we list the metric, the vierbeins and the spin connections for R x S3 used
in this paper. In this metric,

1 T 2T 4
/ng = —/ d@/ dgb/ dy sin 8, (2.6)
8 Jo 0 0
so that [ dQ31 = 272

SYMpy s3/7, is obtained by identifying the value at (0, ¢,¢) with that at (6, ¢,y + 4%)
for all the fields in SYMpg, g3. The relation between the coupling constant of SYMpgy g3z,
and that of SYMpgy g3 is given by

Iixss = KORys 12, (2.7)

The k& — oo limit of this procedure can be regarded as a dimensional reduction. This
dimensional reduction with a redefinition of the gauge fields gives rise to SYMp, g2.
In order to obtain SYMp, g2, we make following replacements:

A= Agdt + Agdf + Agdd + Aydp — Agdt + Agdf + (Ag + L cos0®)dg + Lady, (2.8)
T T

We also assume that all the fields are independent of ). Then, using the metric, the
dreibeins and the spin connections for R x S? listed in appendix A, it is easy to see that



(1)) is reduced to an action on R x S2. For instance, the space components of the gauge
field strength are reduced to quantities on R x S? as

F12 — F12 —Mq), F13 — qu), F23 — DQ‘b (29)

The final result is

1 ds) 1 w1 ' 2
Spyge = /dt 2Ty (—ZFa/b/F“ - 5Da,@pa P — %@2 + pFhp®

g?{XSQ ,UQ
1 , 2 1 1
5 Do X D" X, = %an + X X + 5 (@, X

- - . N
—%)\F“ D+ %AFI%A — SAL[@,\] = SA" X, A]) (2.10)

where a’ and V' are the (2 + 1)-dimensional local Lorentz indices and run from 0 to 2. The
radius of S? is fixed to % and

™ 2m
/ng :/ d@/ d¢sin 6, (2.11)
0 0

so that [ dQs1 = 47r. When SYMp,, g2 is identified with the & — oo limit of SYMRys3/2, 5
the coupling constant gp, g2 is expressed as

kﬂgé 53/7
g%xsg = lim — 2%k /2

2.12
k—o0 47 ’ ( )

so that kgl%%X $3/7, must be fixed in the & — oo limit. This relation will be used in compar-
ison with the gravity duals in section B.I]. (R.10) is SYMp, g2 obtained in [f].

For later convenience, we rewrite (2.10) using the 3-dimensional flat space notation,
which is represented by the orthogonal coordinates system (z1, z2, z3) or the polar coordi-
nates system (7,6, ¢). We introduce the flat space nabla

1

rsin

= 1
J =80, = &0, + -9 + &, Dy, (2.13)
T

where €; (i = 1,2,3) are the unit vectors of x; directions, and €., €& and €, are the unit
vectors of the r, 8 and ¢ directions, respectively. In the followings, the r-derivative in )
does not contribute and r in 9 is fixed to i We construct a 3-dimensional vector from Ag
and Ay as

T - I "
A=puA —A 2.14
HAgeg + S g e (2.14)
and define a vector,
I =T’ (2.15)

We make a unitary transformation for the fermion,

A — eflzesTaedlizy (2.16)



Then, it is easy to see the transformation of the following two terms:
i e’ 310 ISR 2 B iy 123
Tr <_§>\F Da/)\> — Tr <—§)\I‘ Do — §>\F (€ x D)X\ — ?)\I’ )\> , (2.17)
1 313 1 = -
Tr _iAF [®,A] ) — Tr —5)\I’ [P, A] ). (2.18)

where D = § — z[ff, |. The other terms including the fermion are unchanged. Note that
the last term on the righthand side of (.17) shifts the coefficient of the fermion mass term.
In order to rewrite the bosonic part, we define the following quantities:

= uL® — [V, ]. (2.19)
Z is evaluated as
Z = (—p® + F12)é, + D1 ®ép + Dy®éy. (2.20)
Finally, we obtain
Spys? = ?;SQ /dtdl?; Tr (%(Do? —ipL©® Ag)? — %Z%r (2.21)

1 9 1 7 2 Mz 2
+§(D0Xm) +§(£Xm) —ng

1 < 1oz = 3ius 1.
7 X, X - %)\FODO)\ + ST L - %)\Fm)\ — AL (X, A]) .

It is now easy to obtain PWMM. We dimensionally reduce (R:21) to 1 + 0 dimensions
by dropping . The result is

1 dt 1 1 i 1 12
Spw = —5— [ — Tr | =(DoY:)? — = (uYi — =€k}, Yi])? + = (Do Xm)? — = X2
PW gIQDW/MQ 1“<2( 0 l) 2(/‘ i 26’ljk[ 7o k]) +2( 0 m) g m
1 1 ) 3iu -
5 Vi, X + 7 [Xom Xa]? = SAT*DoA - —;M)\F123)\+

1. 1.
MY, A] — AT [X
AT = AT X0 )
(2.22)

where 47rg%W = géx g2- In appendix B, we show that this is indeed equivalent to the action
of PWMM used in the literature.

In appendix C, we describe the supersymmetry transformations of all the theories. In
appendix A, we rewrite the actions (2.1)), (R.21)) and (R.29) in terms of the SU(4) symmetric
notation. We will make mode expansions for these SU(4) symmetric forms of the actions

in sections 5 and 6. In the remaining of the present paper, it is convenient to assume that
the gauge groups of PWMM, SYMpg, g2 and SYMp, g3/7, are U(N), U(N) and U(N),
respectively.



2.2 Nontrivial vacua

While SYMp, g3 has the unique trivial vacuum, SYMp, 53,7, has many vacua. Those
vacua are given by the space of flat connections on S/Z. The space is parameterized by
the holonomy U along nontrivial generator of 71 (5% /Z;) = Z; up to gauge transformations.
U satisfies U* = 1, so that U can be diagonalized as

U = dlag(ezkﬁl7elkﬁl7... ,elk617elk527elk52’.-- ,611@52,--- ,
~ _
Nl N2
elkﬁT,eszT,... ’elkﬁT)’
Nt

(2.23)

where all §; (s = 1,---,T, T < k) are different integers mod k, and Ny + --- + Np =
N. The vacua of SYMp,gs/z, are parameterized by U in (R23). By applying the flat
connection condition to the supersymmetry transformation (C.3), it is easy to see that
these vacua preserve all 16 supercharges. In the vacuum (PR.23), the gauge symmetry U(N)
is spontaneously broken to U(Ny) x U(Nz2) X -+ x U(Nr).

Next, let us discuss the vacua of SYMpg, g2. The condition for the vacua of SYMpg g2
is obtained from the k& — oo limit of the condition for the vacua of SYMg, g3 /7, , which
are given by the space of the flat connections on R x $3/Z;. Then, it is seen from (P-9)
that the condition for the vacua of SYMp, g2 is

Fia — p® =0,
D1® = Dy® = 0. (2.24)

On the other hand, the condition for vacua derived from (2.21)) is

Z =0, (2.25)
which is indeed equivalent to (2.24]) as seen from (.2(). In order to solve the equations
([2-24), we take a gauge in which ® is diagonal. Then, the second equation in (-24) implies

that ® is constant. We parameterize ® as

M.
¢ = Edlag(alyaly' 0, A, AU, T ,aT)a (226)
~ 7 ———
Nl N2 NT

where all ay’s (s =1,---,T) are different, and Ny + --- + Np = N. Then, it is seen from
the second equation in (P.24) that A; and Ay are block-diagonal, where the sizes of the
blocks are N1, Na, -+, Np. Using the remaining U(Ny) x U(N3) X --- x U(Nr), we take a
gauge in which A; = 0. Then, the first equation reduces to

V1A + pcot 0 As = ud. (2.27)

This equation can be easily solved by introducing patches on S? as

Ay = {tang ® in region I (2.28)

—cot g ® in region II ’



where the region I corresponds to 0 < 6 < 5 + & while the region II corresponds to
5 —e < 0 < m. To summarize, the solution to (P.24)) is

~ w..
¢ = Edlag(ahalf" CAREC DTN PRI € 7 PPN 67 AP 0 7 AP ,(XT),

N1 N2 Np
A =0,
Ay = {tang §> ) %n reg?on I
—cot 5 ® in region II

(2.29)

Each diagonal element of A; and A, is the configuration of a monopole with magnetic
charge ¢, = 5. In the overlap of the regions I and II, the configurations in both patches
are transformed each other by the gauge transformation given by

2.
‘/}_,]] = exXp <Z—q)(b> . (230)
1%

It follows from the single-valuedness of Vi_ s that all ay’s (s = 1,---,T) in (R.29) are
integers. This is nothing but Dirac’s quantization condition for the monopole charges.
One can understand this condition from a different point of view as follows. In the k — oo
limit, each vacuum of SYMp, g3z, would reduce to a vacuum of SYMp, g2. As mentioned
in the previous subsection, S3/Z}, is obtained by making an identification on S3, (6, ¢,1) ~
0, ¢, 1/)—{—4%). A generator of 71(S5%/Z},) is a non-contractible loop, C : (3,0,4) ¥ € [0, %]
The holonomy along this loop is

4m
Kk
U = Pexp i/o Aydi| . (2.31)
In the k — oo limit, from (2.§), this reduces to
4 1
U= 256, 6)] . 9.32
exp [ 0(0,0)] (232
Substituting (R.26) into (R.39) yields
U = diag(ei%’ral ei%al . ei%al ei%’rag ei%ag . ei%ag .
N No
ei%aT’ e’i%aT, . ’e’i%aT)‘
Np
(2.33)

The condition U* = 1 indeed implies that all ay’s (s = 1,---,T) are integers. This
consideration also clarifies correspondence between the vacua of SYMg, g3 /7, with the k —
oo limit and the vacua of SYMpy 2. Using (C.2), it is easy to show that the vacua (2.29)
preserve all 16 supercharges. In the vacuum (P-29), the gauge group U(N) is spontaneously
broken to U(Ny) x U(N3) x --- x U(Nr).



Finally, we discuss the vacua of PWMM. The condition for the vacua would be obtained
by dropping the derivative in (2.25). The result is

1
nY; = el Yil = 0. (2.34)

This condition is also read off directly from (2.23). The general solution to the equation
E39) is

Y = —pL;, (2.35)

where L; is a representation matrix for a N-dimensional representation of SU(2), which is
in general reducible, and satisfies [L;, L;] = i€;j5Li. One can decompose it into irreducible
pieces as

(2.36)

where ngs] (s =1,---,T) stands for the (2js; + 1) x (2js + 1) representation matrix for
the spin js representation of SU(2) and satisfies
ls] plisly _ [Js]
(L7, L) = e L™,
(LY = GulGis + Dajn, (2.37)

and

A

(271 + N1+ (2j2 + N2 + -+ + (2jr + )N = N. (2.38)

The vacuum (R.3¢) can be interpreted as a set of coincident Ny fuzzy spheres with the
radius p\/js(js +1) (s = 1,---,T), where all the fuzzy spheres are concentric. One can
see from ([C.1)) that this vacuum preserves all 16 supercharges. In this vacuum, the gauge
symmetry U(N) is spontaneously broken to U(Ny) x U(Ny) x --- x U(Ny).

,10,



3. Gravity duals

In this section, we consider the gravity duals of the theories with SU(2[4) symmetry. In
section B.1], we review the electrostatics problem that gives the gravity dual of each vacuum
of these theories. In section B.2, from relations between the configurations of conducting
disks for the vacua, we obtain two predictions on relations between the vacua of different
theories.

3.1 Electrostatics problem

It was shown in [@] that a general smooth solution of type IIA supergravity that preserves
the SU(2|4) symmetry is characterized by a single function V' (p,n) and takes the form

pow\ [ 0 e vy
ds3y = <7> {—4 - —dt? + ——(dp® + dn?) + 4d2 + 2TdQ%} )

V-2V \%
—V"V2A2 ]
V'V
Ch=—= —dt,
V-2V

V2 \Ved
A

8%
H3 = dBs, BQZ( A +n)d29,

Fy=dC;, Cs5=—4 dt A d?Q,

A=V =20V — (V2 (3.1)

where the dot and the prime stands for the derivatives with respect to log p and 7, respec-
tively. V' can be regarded as an electrostatic potential for an axially symmetric system
with conducting disks and a background potential. p is the distance from the center
axis and 7 is the coordinate in the direction along the center axis. V is decomposed as
V = Viy(p,n) +v(p,n), where V} is the background potential, and v is determined by a con-
figuration of conducting disks. Each theory is specified by V; and each vacuum is specified
by a configuration of conducting disks. The distance d between two disks is proportional
to the NS 5-brane charge, d = 5 N5, while the electric charge ) on a disk is proportional
to the D2-brane charge, Q = %QNQ.
The background potential for SYMp, 53,7, is

Vi = W(p* = 21%), (3:2)

where W = ¢/kg3, o /7, With ¢ a constant [A]. In this case, the system is periodic with
respect to n with the period Sk, and the total NS 5-brane charge is k. One can concentrate

a region 0 < n < Tk, where one can place conducting disks at n = 0, 5,--- ,5(k — 1). For
the vacuum (), T disks are located2 at 7712: 561,12 2: 502, ,nr = 5Pr. The electric
charges on these disks are equal to G- N1, °-Na, - -+, = Nr, respectively. Figure [ shows

this configuration of conducting disks.

— 11 —



2
wk/2
2

)2 m°N2/8

2
Wﬁl/Q yis N1/8

0

—_—
p

Figure 1: Configuration of conducting disks for (£.29)

SYMp, g2 corresponds to the & — oo limit of SYMpgy 3,7, . For SYMp, g2, the region
of n becomes infinite. The background potential for SYMpg, g2 is given by

V= W(p* —2n*), (3.3)

where W is given by the k — oo limit of W, so that k:g%X 537 must be fixed. This
is consistent with the result in the gauge theory side, and from (P.19) W turns out to
be c,u/471’g%x52. By using the correspondence between the vacua of SYMg, g3,7 with
the k& — oo limit and the vacua of SYMp, g2 seen in the previous subsection, it is easy
to construct a configuration of conducting disks for each vacuum of SYMp, g2. For the

vacuum (R-33), there are T disks located at2771 :2%0617772 :2%042, -+ ,nr = gar. The
electric charges on these disks are equal to “&-Ny, %5 Na, - -+, %o N, respectively. Figure 2!
shows this configuration of conducting disks.
The background potential for PWMM is
202 2 3
Vo =W(p™n — %), (3.4)
where W is represented in terms of a certain function h as [9]
o 1 5 A
W = ——h(gpwN). (3.5)

9pw

It was pointed out in [RJ] that the correspondence between the trivial vacuum of SYMpy g2
and a certain vacuum of PWMM shown in [[j] is consistent with the gravity side only if
the function h approaches some constant h., at large values of its argument. Namely, this
behavior of h is true if the gauge/gravity correspondence for the theories with SU(2[4)
symmetry is valid. We assume this behavior, and we will use this assumption to obtain the
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Figure 2: Configuration of conducting disks for (R.29)

n
2N /8
(27 +1)/2 "Nt/
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0
_—
D

Figure 3: Configuration of conducting disks for (2.34)

prediction 1). In the case of PWMM, only the region 1 > 0 is meaningful. There is always
a infinitely large disk sitting at 7 = 0. For the vacuum (2.3€)), there are T' disks other than
this disk. They are located at n; = 5(2j; + 12,772 :2%(2]'2 + 1)2, -~ nr = 5(2j7 +1). The
electric charges on these disks are equal to &Ny, %5-Na, - -+, %= N, respectively. Figure B
shows this configuration of conducting disks.

3.2 Predictions on relations between vacua

We first consider a limit that transforms a vacuum of PWMM into a vacuum of SYMpg g2.

Naively, by moving the infinitely large disk in a configuration for a vacuum of PWMM away

,13,



to infinity as in figure |, one obtains a configuration of disks for a vacuum of SYMp, g2.
This motivates us to take the following limit. We parameterize the positions of the disks
for a vacuum of PWMM, which are proportional to the dimensions of representations of
SU(2) in the gauge theory, as

2js + 1= No + (s,
778:770""7757

T _ s
no = ENOa Ns =

ECS, (36)

where Ny and (; are integers. Under a shift n — 79 + 7, the background potential (B.4) is
transformed as

2 . . X - 2
V, — _§W778 — 2W77§n + Wno(P2 - 2772) + W(np2 - 5773) (3.7)

The first and second terms on the righthand side do not contribute to the Laplace equation,
the boundary condition for V' and the geometry. In the limit,

Ny — 00, W — 0, Wno — W = fixed, (3.8)

the last term vanishes and only the third term survives resulting in the background potential
for SYMp g2. In the T = 1 case, it was explicitly shown in [RY] that the charge Q; can be
fixed in this limit. It is reasonable to expect that all the charges Qs’s (s =1,--- ,T') can be
fixed in this limit for generic T. Hence, the limit (B.§) indeed transforms the gravity dual
of a vacuum of PWMM to the gravity dual of a vacuum of SYMp, g2 (See figure {}). This
observation on the gravity side leads us to the prediction 1). Indeed, by using the relation
between W and 9drxs2 and the behavior of h in W discussed in the previous subsection,
we obtain the prediction 1) that on the gauge theory side the theory around the vacuum
(:36) of PWMM coincides with the theory around the vacuum (R.29) of SYMp, g2 with
the identification (s — (; = as — oy (s,t =1,---,T) in the limit

N
Ny — 00, —5 = fixed ~ ——. (3.9)
I9pw IR« g2

In section [, we will prove the prediction 1).

Next, let us discuss the prediction 2). In the gravity dual of SYMp, g2, we consider
a configuration of disks which is periodic in the 7 direction with period §k and extract a
single period. This procedure should yield the gravity dual of a theory around a vacuum
of SYMp, 3,7, In the procedure, W = W, so that the coupling constant of the resultant
theory around the vacuum of SYMp, g3/, is given by a relation

47
2 2
IRxS3/2, = EQRXSQ' (3.10)

In particular, figure f] shows the case in which the trivial vacuum of SYM g, gs /7, with the
gauge group U(N) is obtained. The corresponding vacuum configuration of SYMp, g2 is

@:g(--- k(s —=1),- k(s = 1), ks, -+ ks, k(s + 1), k(s +1),---),

N N N
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Figure 4: From a vacuum of the plane wave matrix model to a vacuum of 241 SYM on R x S2

Ay

0,
{ tang d in region I

A2 0 4 - .
—cot 5 @ in region II

(3.11)

where s runs from —oo to co. In section f], we will show that the theory around the trivial
vacuum of SYMp, g3,7, with the gauge group U(N ) is obtained by the theory around the
vacuum labeled by () through the following procedure: we impose a condition which
corresponds to the periodicity on the gravity side and extract a single period, and input the
relation (B.10). This is a proof of the prediction 2) for the trivial vacuum of SYN, gs 7

4. Spherical harmonics

In this section, we consider various spherical harmonics: the spherical harmonics on S°
in section [i.1], the monopole harmonics in section [£.3, and the fuzzy sphere harmonics in
section .. We reveal relationship between the spherical harmonics on 53 and the monopole
harmonics in section .9, and relationship between the monopole harmonics and the fuzzy
sphere harmonics in section [.3. The latter implies that the fuzzy sphere harmonics can
be regarded as a matrix regularization of the monopole harmonics. In this section, we
frequently use the formula for the representations of SU(2) gathered in appendix D.

4.1 Spherical harmonics on S°

In our previous publication [B]], we summarized the properties of the spherical harmonics
based on [BJ-B7] and found some new formula. In this subsection, we recall the properties
of the spherical harmonics on S® based on [B1] and add some new formula. We view S® as
G/H = SO(4)/SO(3), where G = SO(4) = SU(2) x SU(2), and the subgroup H = SO(3)
is naturally identified with the local ‘Lorentz’ group SO(3) on S®. We denote the generators

,15,
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Figure 5: From a vacuum of 2 +1 SYM on R x S? to the trivial vacuum of A/ = 4 SYM on
R x SS/Zk

of the SU(2) in G by J; and those of the SU(2) in G by .J;, where i = 1,2,3. Then, the
generators of H are represented by S; = J; + J;.

The irreducible representations of G are labeled by two spins, J and J, which specify
the irreducible representations of the SU(2) and the SU(2), respectively. We denote the
basis of the (J,.J) representation by |Jm)|.Jim). The basis of the spin S representation of
H is constructed in terms of |Jm)|Jn):

|Sn; J)) =) Csn

Jm Jm

[Tm)| i), (4.1)

where Ci’; . is the Clebsch-Gordan coefficient of SU(2) and the triangular inequality,
J—J|<S<J+J, (4.2)

must be satisfied.
A definite form of the representative element of G/H is given by?

T(Q) = e—i¢J36iwj36—i%(J1—j1). (4.3)
The spin S spherical harmonics on S? is given by

Y () = N3 ((Sns LIT7H(@)Tm) | ), (4.4)

Jm

where N 5 b is the normalization factor fixed as

@I+ DT +1)
ij_\/ 5541 . (4.5)

2We use the coordinate system given in appendix A, which is different from the one in [@]
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The spherical harmonics ([L.4]) satisfies the orthonormal condition

ng g
/ J1WL1,J1WL1) yJQT:’nQ,jQ'ﬁ’LQ = 5J1J25j1j25m1m25ﬁ11ﬁ12- (46)
The complex conjugate of yfn i is given by
S * J+J-S S
(yJTT:hjﬁL) = (- Y; ZLJ - (4.7)

The covariant derivative is understood as an algebraic manipulation:

2 yf;jm( ) = —iN5:((Sn; JI|(J; — J) X1 Q)| Tm)| Jn). (4.8)

Using this relation, it is easy to obtain the eigenvalue of the laplacian for the spin S
spherical harmonics:

V2YSn = _(2J(J 4+ 1)+ 20 (] +1) = S(S+ 1)) Y (4.9)

,Jm ,Jm

Moreover, using (f.§) and (D.§), we find a new formula

7 I S S/ 1
1r n _ . J+J+S+S"—n
O snVrYom 5 = —i(=1) <\/3J(J +1)(2J +1) { I j}

—(—1)5—5’\/3J(J +1)(2J +1) { 5 ‘3/ ; }) ?ﬁﬁm’ (4.10)

where

- 1 ) .
Vi= :Fﬁ(vl iZVz), Vo= Vs. (4.11)

In particular, when S = S’, this formula reduces to

= i(=1)5 VBT + 1) = J(J+ 1)V

Jm,Jm’

1r Sn
CSn’ Snv y

T, (4.12)

By using (D.9) and (D.7), we rewrite (.4) to an expression, in which the connection to
the monopole harmonics defined in the next subsection is clear:

Sn _ m

me,jrﬁ - ,CS”"'CJP S/ me7 (4.13)
where

Ksnn = (Snle’ 251 1?93 '), (4.14)
and Yjpm = yOO T which is the scalar spherical harmonics. In [BI]], we found the compact
formula for the mtegral of the product of three spherical harmonics,

dQ?’ yslnl ) Sang Ssns CS1n1
Jima,Jiia Joma, oty ¥ Jamsg,Jams  S2m2 S3n3

n1n2n3
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Jl jl Sl _
= \/ (251 +1) (22 +1)(2J + 1)(2J5 + 1)(2J5 4+ 1) { Jo Jo Sy p CIvm ¢hin

Jama J3m3 ™ Jome Jarng

J3 jg S3
(4.15)
Here we rederive the formula in a different way, starting with a particular case of the
formula,
dS23 * 2L+1)25s+1) T
/F(Yhmlfm) YszzﬁLQYJsmsﬁbg = \/ 2J1 1 CJ;;?; nggchl:ggl Jatg" (4.16)
By noting
S * S /
Z CS;:LLQI S3ng (’Cslmm’) lCSgngng’lCS3n3n3’ = CSQIZQI/ Sang’ (4.17)
ninans

we find that the lefthand side of (4.17) is equal to

S CJrm CJ2mz CJsms / %

~ * ~ ~
Sana S3n3 ™ Jipy Sini - Japa Seno  Japs Sang 27-(-2( lelml) J2P27712YJSP37713' (4'18)

Applying (f.16) and (D-Q) to this expression leads to ({.13).

As an application of the above results, we consider scalars, vectors and spinors on
S3. The scalar corresponds to S = 0. From the triangular inequality (), we see that
(J,J) = (J,J). We introduce a notation for the scalar:

Yimin = Vg - (4.19)

The vector corresponds to S = 1. Then, the triangular inequality implies that (.J, J ) takes
(J+1,J)or (J,J+1)or (J,J). We assign p=1, p=—1 and p = 0 to these three cases,
respectively. We make a change of basis from the basis of the S3 eigenstates to the vector

basis:
T L(_yn oyl )
Jm,Jimn V2 Jm,Jm Jm,Jm/’
2 _ i 11 1-1
me,jm - _E(me,jm + me,jm)’
3 _ )10
me,jm - me,jm' (4.20)
We introduce a notation for the vector:
p=1 .~y p=—1 .~y p=0 _ ~si
Y immi = iV mJi Y Jmmi = _ZySm,J+1 Y Jmmi = yf]m,JﬁL' (4.21)

Here the factors i on the right-hand side are just a convention. Note that Y}):O M=(0,0)i =
0. The spinor corresponds to S = % The triangular inequality implies that (J, J ) takes
(J+3,J) or (J,J +1). We assign k = 1 to the former and x = —1 to the latter. We

introduce a notation for the spinor:

yr=l — yszé’a =l = yszé’a (4.22)
Jmina T L gy L g T Jmima T g g Lm? :
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where « takes % and —%. The orthonormality condition ([.§) is translated to the scalar,
the vector and the spinor as

Qs

/ 27T2 (YJlmlml)*YnggﬁLQ = 6J1J25m1m26m11”7b2;

Qs
p1 *y702 _
/271'2 (YJlmlfnli) YJQQOQ@' - 5p1p25J1J25m1m26ﬁL1fn2’

dSs N
/W (Y}ﬁllrﬂlmla) Yg%?’LQmQCV = 5H1/€25J1J25m1m25m1m2, (423)

while their complex conjugates are read off from (.7) as

Yimm)* = (=)™ ™Y,

(Y ms) = (D)™)o

(Y mma) ™ = (1) E L (4.24)
The eigenvalues of the laplacian can be read off from ([£.9):

V2 Y mm = —4J(J + 1) Y,

VY= —(I(J+2)+2) Y

V2 Vs =~ (4 +1) = 2) Vo

V2 Y ma = —(2J(2J +3) + %) A (4.25)

Using ({.10) yields identities,

Vi Yimm = —21 V J(J + 1) Y})mfma

Vi Y fmi = —2i0p0V/ I (J + )Y,

€ijk Vi Y e = =20( + 1) Y s

068 Vi Yimms = —ik(2J + 5) Y7 o (4.26)
In [B1], we defined various integrals of the product of three scalar or spinor or vector
harmonics, which we call vertex coefficients:

Jimimi _ dQ3 *
CJ2m27712 Jsmszms :/ (YJlmlﬁLl) YJ2m2m2YJ3m3T7L3'

272
. dQ)
Jmm _ 3 _\*1P1 P2
DJ1m17ﬁlp1 Joamaomapas — / 272 (YJmm) YJlmlﬁlliYnggﬁlgi'
& - - - = d_QS € p1 p2 p3
Jimamapy Jamamape Jsmamaps = | 55 “igk L ymymait Jamaragt Jymarisk
Jimimiky _ dQs K1 %\ K2 ~
’7:J2m2n~7,2/€2 Jmm — / 271'2 (YJlmlﬁwla) YJngﬁlgaYJmm'
Jimimiky _ dQ?’ K1 * 14 K2 P
ngmgﬁlgHg Jminp = / o2 (YJlmlﬁna) UQﬁYJQmQThQﬁYJmﬁM' (4.27)

The expressions for the vertex coefficients are obtained by using the formula (4.1§) and
given in appendix E.
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4.2 Monopole harmonics

The angular momentum operator in the presence of a monopole with the magnetic charge
q at the origin takes the form

LW =7 x (—id — AD) — ¢e,, (4.28)
where
Jo Ztan gé’¢ in region I (4.29)
—4 cot g€¢ in region II

The regions I and II are defined in section P.J and ¢ can take O,i%,:tl,:t%, -+« due to
Dirac’s quantization condition, as explained in 2.2. Noting T = ré,, it is easy to see that

neither r nor the r-derivative appear in L@ in the polar coordinates system. Note that
L© is nothing but L© in (B17). L@ satisfies the SU(2) algebra:

LA, L) = ey LY. (4.:30)

The monopole harmonic function (section), Yy jm (0, ¢), was constructed by Wu and Yang
B, where J takes |q, |¢| +1,]¢| +2, - and m takes —J, —J +1,--- ,J —1,.J. The explicit
expressions for Y, j,, in the regions I and II are given in [[]. It is convenient for us to
multiply a phase and normalization factor:

Yimg = (=1)VanY, jm (4.31)

We see from [{, [1] that Y,,, has the following properties.

Liq)?qu — \/(J Fm)(JEtm+ 1)?Jmi1qa
Li(,’Q)f/‘]mq = m?Jmm
L2V = J(J + 1Y g,

A o e
/4—71_2(Yqu) YJ’m’q = 5JJ’5mm/a

(?qu)* = (_1)qu?‘]7miq’

Qs -~ - - ;
/?(YJ1m1q1)*YJ2m2q2YJ3m3q3 = CJQI:ZQI(?; Jamsqs for q1 = q2 + g3, (4.32)
where Cj;::;g; Jsmsgs 1S the same as the vertex coefficient defined in (E27). We emphasize

that J = |q|,|q| + 1,]g| +2,--+ and ¢ = 0, £, £1,£3 - ..
The spin S monopole harmonics is defined by

)51 _rdm oy
me,jq =C Y

Ty 5 Y g (4.33)

Sn

T, i POSSESSES with the iden-

)75;2 j, POssesses the properties similar to the ones which )
tification ¢ = 7. The counterparts of (ff) and ({q) are

d€s ~ ~
Sn * ySn _ -
/ A Z(‘y]ﬂm,jlq) yJ2M2,j2q _6J1J26J1J26m1m2’
n
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The counterpart of (f.10) is

J J J Jm,Jm’
(4.35)

7 \) J ! I/ T T S S/ 1 ~Qf
Cé,f’n, Snqu)in,jm — (_1)7J7J+2S+n +1\/3J(J + 12T +1) { > 0 }yS -n

where Liq) = %(qu) + iqu)), L(()q) = L:(Sq). By comparing (fE13) and (f:33) and using
the last identity in ([.33), we can prove the counterpart of ({.15) in the same way:

/ dds Slnl )* 1S2m2 1S3m3 Cslnl

Jﬂnl,jl(h Joma,Jagz ¥ Jzmsg,Jaqs  O2M2 S3n3
nlngng

J1 jl S

= \/(251 + 1)(2J2 + 1)(2j2 + 1)(2J3 + 1)(2j3 + 1) Jo 122 SQ Cj;g;l JSmSCJ{QI;JQI s’
Js J3 S3

(4.36)

where ¢ must be equal to g5 + ¢3.

Here we make a remark. The similarity between the spherical harmonics on S% and the
monopole harmonics seen above can be understood through (f.13), (f:33) and the following
equalities:

Yimm = (—=1)7 \/ﬁd(‘]g1 (0)e™ Y =T/2) gimi+m/2)

)

T (-1)7 V2J +1 d(,J,z,L, (0)e’ @™ in region 1 (4.37)
Jma (-1 V2T +1 d(_‘]g% ,(0)e" =1+ ™2 in region T '
where
d)(0) = (Jm| €2 |Ji). (4.38)

The monopole scalar harmonics, the monopole vector harmonics and the monopole
spinor harmonics are defined similarly:

\ _ )00
Yqu - me,jq’

p=1 N p=—1 N9 p=0 _
Yquz ZyJ-f—lqu? Yquz - Zme,J—}—l qQ’ YquZ me7Jq7
1
_ k=—1 __ ”515704
qua yJ-i— m,Jq’ " Jmgo T meJ-i—% q (4.39)

where y’ m.Jq is an analogue of yl - and defined in terms of JN)}ZI jq’s as in ([.20). These

harmonlcs are also orthonormal:

dQly  ~
/ An (YJlmllJ) YJ2m2q 5J1J25M1M27

Qs - .
/E (Yﬁlmlqi)*Y£2m2qi - 5P1p25J1J25m1m27
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dQs - ~
/ﬂ (Yfmlqa)*yfmgqa = 5H1H25J1J25M1m2' (4'40)
Their complex conjugates are analogous to those of the spherical harmonics on S3:

(?qu)* = (_1)m_q?J*m*Q’ (i/j)qu)* = (_1)m_q+1?j)—m—qi’

(Vinga)™ = (=)ot ly g (4.41)

J—m—q—a-

Using the formula ({.35) yields the identities analogous to ([.26):

LOY g = VI(T + DY,
LDy =TT+ 1600V rma,

L9 <Y YO =p(J+ 1Y

5 3\ - 3 .
(5 ICUN® Z) Vg = 60 + )Y g (4.42)

It follows from (f.19) and (f.36) that the integrals of various three monopole harmonics
are equal to the corresponding integrals on S (vertex coefficients) with the identification

q = m. Namely, the following identies hold.

ddy > > J
* _ 1miqi1
/ A (YJ1m1q1) YJ2m2Q2YJ3m3Q3 - CJQquQ J3mszqs®

dSd (N )*ffﬂl yP2 = pJma
A Jmg Jimiqii~ Jamaqoi Jimiqip1 Jamaqap2”®

—dQQG“ y® y 2 y 3 =&
Ar ijk L Jymiqrit Jomoqoj T Jamagsk — ©Jimiqipr Jamagapz Jamsqsps -

dQ? K *\rK Y Jimiqik1
/E (YJIIWqulCV) YJQQmQCDOéYqu = ’7:J2m2qm€2 Jmgq*
dQ? K % 1 \rk P Jimiqik1
/ A7 (YJ11m1q1a) O-OéﬁYJngquBYqui = ngmgqgng Jmgp> (443)
where the monopoles charges must be conserved as in the last equality in ({.39).

4.3 Fuzzy sphere harmonics

Let us consider the set of linear maps from a (25’ 4+ 1)-dimensional complex vector space
Vi to a (254 1)-dimensional complex vector space V}, where j and j” are non-negative half-
integers. We denote the set by M ;. M, is identified with the set of (25 +1) x (25 +1)
rectangular complex matrices and is a ((2j + 1) x (25’ + 1))-dimensional complex vector
space. It is convenient for us to consider the basis of the spin j and j’ representations of
SU(2) as a basis of V; and Vj/, respectively, and to construct a basis of M;; as

’jr><j/74"7 (T:_j7_j+17 73_1737 7a,:_j/7_j/—i_17'” 7j/_17j/)' (444)
Then, an arbitrary element of M;;/, M, is expressed as

M = ZMTT” |j’r><jlr/|' (445)

r,r!
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One can define linear maps from M,;» to M,; by its operation on the basis:
Lio |jr){(j'r'| = Liljr)(§'r'| — 13m) (57| Ls, (4.46)

where L; is a generator of SU(2). The matrix element M, is transformed under these
maps as

M !

(Li o M)y = (LV),, M o (LI, (4.47)

) pr

where Ly} is the (2j + 1) x (2j + 1) representation matrix of the spin j representation of
SU(2). These maps form a ((25 + 1) x (25’ 4+ 1))-dimensional representation of SU(2),
which is in general reducible, because the following identity holds:

(LioLjo—Ljo Lio)|jr){j'r'| = ieijuLy o |ir){j'r']. (4.48)

For later convenience, we introduce a positive integer constant, Ny, and reparameterize
the dimensions of V; and Vj as

2j+1=No+¢, 2§ +1=Ng+, (4.49)

where ¢ and (' are integers which are greater than —Ny. We will take the Ny — oo limit
shortly. It will turn out that the fuzzy sphere harmonics defined below are identified with
the monopole harmonics in this limit. We make a change of basis from the above basis to
a new basis,

y i) \/NOZ =gl = C;]_T )G, (4.50)

where J takes [j — j'|,[7 — 7|+ 1,---,j+j and m takes —J,—J +1,--- ,J —1,J. In
other words, J takes 3[¢ — ¢'|,4[¢ = ¢'[+ 1, ,3(C+ ) + Ny :1. Ny plays a role of an
ultraviolet cut-off for the angular momentum. For a fixed J, YJ(% ) is the basis of the spin
J irreducible representation of SU(2). Namely, using (D.J), one can show

Lio V9 = JTFmT £m+ DY),
Lyo V) = my 7). (4.51)

These relations also imply

Lio LoV = j(J+1)v", (4.52)
YJ(%/) satisfies the orthonormality condition under the following normalized trace:

1

Fotr(yjfgfy}ggng) = 0717 Omimas (4.53)

where tr stands for the trace over (25 + 1) x (25" + 1) matrices. The hermitian conjugate
of }A/J(ffb ) is evaluated as

YUt — (_qym=G-i"y U9, (4.54)
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Using (D.5) yields

'ty - 6" 5)
o (YJljnil Yngg Yngjg)

' en " Jy Jy J
= (—1)NH2Bm 33 NG (2, + 1) (203 + DO {j}, f Jj”}. (4.55)

One can see from (D.§) that in the Ny — oo limit this equality reduces to

J1m1 szz J3m3 2J1 + 1 J2m2 ngg J2(j/_j//) J3(j//_j)- (456)

L (UG ")y \/(2J2 + D@ AL hmi ohG-)
0

Comparing the relations @51, @), [E5Y), (E59) and (f5G) with the relations in ([{.37),

one can see that V97 is identified with Y me in the Ny — oo limit through the following
Jm q

correspondence:

J'—J"<—>q
Lo<—>L

tr o / Sy (4.57)

In this limit, the lower bound of J in Y}% , |7—7'|, remains finite and indeed corresponds to
the monopole charge ¢ while the upper bound of J goes to infinity, namely, the ultraviolet
cut-off is removed.

The analogue of ([£.33) is defined by

VS Jm x-(3")
Vit = Cinsa¥i (4.58)

which we call the spin S fuzzy sphere harmonics. yS" shares all the properties except

m, G’
the integral of the product of three harmonics with yf " ; 1)1nder the correspondence ([.57).
In the Ny — oo limit, the trace of the product of three fuzzy sphere harmonics also coincides
with the integral of the product of three monopole harmonics. The spin S fuzzy sphere
harmonics is, therefore, considered as a matrix regularization of the spin S monopole

harmonics. The counterparts of ({.39) are

1 St ~Sn _
Z F0tr(yJNm,jl(jj/)yJ21”fL27J~2(J'j/)) - 5J1J25J1J25m1m2’
n

\Snt _ J+J—=84m—(—j3)4+n v58 —n
me,J(jj/) (=1)7 yJ -m,J ('5) (4.59)

The counterpart of ([L37) is

5 - SS 1| ~o
1r Sn _ J—J+25+n/+1 S'-n
Csimr snlr 0 Vi ji5n = (17 \/3J T+1)ET+1) { J JJ } Y im 65y

(4.60)
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where Lio = :F%(Ll +iLs)o, Lgo = Lgo. Using (f.59) and (D.4), it is easy to prove the
following formula, which is the counterpart of ({.34),
j}SQHQ 3}53n3 Sini

2 : —tI‘( S1nt _ ~ 5 )
Ny Jima, J1(575)" Jama,Ja(5'3")° Jyms,Js(5"5)  S2n2 Sans
ninans

= (—1) 125 ¢3¢ =" \/N0(251 +1)(2J1 +1)(2J5 + 1)(2J2 + 1)(2J5 + 1)(2J3 + 1)

J1 jl Sl
- Ji Jo J.
x q Ja Jy S o { j}, J? j? } (4.61)
Js3 J3 S3
One can see from (D.§) that in the Ny — oo limit, this formula reduces to
1 \ySinat \)S2m2 \»S3n3 S1n1
Z Fotr(yhmlJl(j’j)szmQJz(j’j”)yJSmS,js(j”j)) Csana sany
ninsnsg
J1 jl Sl
= 281412 4+1) 2 +1) 25+ 1)(2T3+1){ o Ty S5
Js3 J3 S3
Jima J1j'~j
Cszg J3m3cj2j’—j”j3j”—j’ (462)

(]

which is equivalent to (f.3§) with the identification j — j' = ¢, as anticipated.
The fuzzy sphere scalar harmonics, the fuzzy sphere vector harmonics and the fuzzy
sphere spinor harmonics are defined similarly:

9 _ 00 _ v
Yim(igry = me,j(jj/) =Y
5 pe1 i Ny - =0 iy
YJm(jj’)i = nyl+1m,J(jj’)7 YJm(jj/)i = _ny]m,JH Gj')» YJm(jj/)i = yflm,J(jj/)?
?n:l _ 5}51%704 ?szl . j}S:%,a 463
Jm(ji")e = Lyt m,a (i) ImGie T T Jm, I+ 5 (65') (4.63)
where )A)LZ]m’ G is an analogue of )NJLZ]m’ Jq and is expressed in terms of 5)}21, j(jj,)’s. These
harmonics are also orthonormal:
1 ot N
N TV Gm, 5y Y rama i) = Oz Omama,
1 N N
p1t p _
Fotr(Ymel(jj’)z‘Ymez(jj’)i) = 0010201112 0mims
1 N N
ST e ) = Sena (109

Their hermitian conjugates are analogous to the complex conjugates of the monopole har-
monics:

-t _ (i A1V
YJm(jj’) =(=1) b= )YJ*m(j’j)’

5ot B G417
Vi = GOV e

N T, 1

Y;;rz(jj’)a = (_1)m (G—3")+rat Yf—m(j’j)—a‘ (4.65)
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Using the formula (f.60) yields the identities analogous to ([.26):

LoVimgm = VIT +1DY?

Jm(ji’)
Io ygm i) m6p0YJm (73")
Lo X0+ Sy = P+ DY,
(7 Zo) Fnom =50+ PPy (4.66)

We define the traces of various three fuzzy sphere harmonics, which are analogous to the
vertex coefficients:

A

5J1ma (5'5) 1 i 3 s
Tama(757) Jama() = 7o Y Ty (7)Y Fomait3) Y 573))-

Jm(5') Lot ym >p2
DJlml(j/j”)Th01 Jama (" 5)p2 NO (YJm(J J)Y 1m1(j’j//)iYJ2m2(j”j)i)'

P1 P2 O P3
ngml(]J )p1 Jama(3'5")p2 Jsms(j"5)ps = EwkN (YJlml(J] )i YJ2m2(] J”)JYJsms(j”j)k)'

-Jima (5 7)1 L o1t K2 Y
Tama0riws smti7) = 3o E s Gy dama 1Y omis5)

s5Jimi(3'7)k1 _ 1 k1T
gJ2m2(J '3 )K2 Jm(3"5)p = Fot (YJlml(] "o aBYngQ(J ]”)ﬁYJm(Jﬁj) )- (4.67)

These can be evaluated using ([£.61]) and the explicit expression are given in appendix F. We
see from ([L.64) that these reduce to the corresponding quantities without the hat, namely
the vertex coefficients, with the identification j — 7' = ¢ in the Ny — oo limit.

5. 24+ 1 SYM on R x S? vs the plane wave matrix model

5.1 Embedding of SYMpg, 52 into PWMM

In this subsection, we prove the prediction 1). Namely, we show that in the Ny — 0
limit the theory around the vacuum (R.36) in PWMM is equivalent to the one around the
vacuum (R.29) with the identification

) o1
Js — Jt = 5(043 — ) (5.1)

and the relation between the coupling constants in (B.9).

We expand the action (JA.1€)) around the background

O+ ey A; — EpAs. (5.2)

“<1>
ml

We make a substitution ¥ — ¥ + Y in (B.16). The terms including ¥ in (A.10) are
evaluated as

(£Xap)®) — pL@O XG0 — [V, Xap)e,
Z(Svt) — M}?(Svt) + iﬂE(qSt) X }_/:(Svt) — Z(Y_: X ?)(Svt),
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(DY — inL® Ag) (50 — (DY)t — iy L(ast) AL, (5.3)

where the suffix (s,t) stands for the (s,t) block of an N x N matrix, which is an Ny x N;
rectangular matrix, and s,t run from 1 to 7. The monopole charge g4 is given by

st = %(as — ). (5.4)

By using (p.3), we obtain the theory around the vacuum (2.29):
SR><S2 — SRTXQEQ + S}%n)iS?a

dQ s
Stes: = /dt : Zt < B XAPE) g, x )
R><S2

2
B2 2 (0) y AB(L3) . 7las) w58 _ B2 5 AB(1s) (1)
+7L(Qt )X (tS).L(Qz)XASB _EX (tS)X:B

n %aoy(t,@ g7 — %(w o) P9) 4 7ty
. (ZMI_:(qSt) X }_/')(570 + M?(&t))

_ %E(Qts)A(()t,S) . E(QSt)A(()s,t) . iM@o?(t’S) . E(qst)AéS,t)

. S s ,S S 3 S S
i a0 — {5 - Ll ) Sy Tyl ’“),

, dQ 1
St = : / dt —2 Ztr(—z@oX P )[Ag, XAB|(s:t) 5[AO,XAB]M [Ag, XAB) (=)
R><S

_ ,LLE(th) (t, ) [Y XAB](S ,t) 4= [Y XAB](t ,8) . [Y,XAB](S’t)
1 -
+ Z[XABaXC’D](t7S) [XAB’XCD](s,t) o §[Y,A0](t’s) . [Y,Ao](s’t)

— Z'aof'(t,éi) - [Ao, ?](s,t) — u[Ay, Y _'](t,s) . I_;(qst)A(()s,t)
+ Z’(wﬁ(qts) x Vt9) 4 Iu?(ts ). (Y » Y)(S )

+ 1(? < TYES) L (F x 7))
+ T/JT(t 8 [Ao ¢A] (s:) | T/JT(t 8 [Y " ](s,t)

— T2 Xy, )0 4 )2 X AP, wg]“’”) : (5:5)

where tr should be understood as the trace over square matrices with a certain size which
are the products of some rectangular matrices.

Moreover, we make the mode expansion for the fields in terms of the monopole har-
monics as

Z Z me YJW‘]SU AB - Z Z xA(ASB?]m?Jm(JSH

J>|gst| m=—J J>|qst| m=—J
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A — Z Z Z 1&?,5;9;) Y g

K=E1 7>|qe| m=—U

J+*
_ A(s,t) A(st
- Z Z QIZ)Jml YJWQst+ Z Z TIZ)Jm 1 qust’
JZ‘Qst‘m—fJf% JZ\(]st\*gm*_J

?(s,t) = Z Z Z ygirfp Jmgse?

P==1Q>|qst| m=—Q

J+1 ( )_) J (5.0
_ s,t) xr1 s,t
D D DR A IS S ST o
J>‘qst‘m=7J71 J>|qst| m=—J

+ Z WS Y (5.6)

J>|gst| -1 m=—J

where U = J + 15, U = J 4 1= ,QEJ—i—(Hp nd Q=J— 2)”. Due to ({.41), the
conditions A(() Ot — A(()t s),Xﬁfé) = XAB(t:s) apd YD = Y(te) imply
st m—qst 1.(t,8 st . m—qe AB(t,s
e O Y A i
Wi = (" (57)

By substituting (@) into (@) and using (4.40), (1.42) and (4.43), we obtain the mode-
expanded form of the theory:

ree __Am [dt s s 2 1)* .
sty = ™ [ o Sl ,;(J+§) PGl

IRrxs2

1 3 S
+28oy(””80y(”) TP p* (J + 1) iy (s

12

+ 5T+ DS ED — i/ T+ Doyl

S 3 s,
i Al — (J + Z) P EOTyAG, t):|

' 4 dt
S?;S2 = —92 / M_tr[ Cw1qst Wa gt W3dus 60xf§§?wl (bg;u)xﬁf(u,s) _ ﬁZB(t u)b(u s))
RxS?
t t A 5 A
- _C:ijSt WZQtuCWq W3quv Waqus (b(‘S t) 545)0.) (S )w1b82U)) (bg;,v)xwf(v,&) - xWB(u,U)bEUZ7S))
t t
Ji (Jl +1) (DUJQQUS w1qst0 wqtuprjBZle(t u)xAB(u ) Dorgrr wiqs:0 W Gus P2 xS;BZJl AB(t, u)ygi,jg))
t A
C:J}qut w3 quv qu wW2(qty P2 Waqus P4 ‘TE:Bzul yfjgzg xde(u v)yfﬁsz

_ (Cwa (st)  (t,u), (u,v) pAB(v,9)
CWlet Waqus qu w2qtu P2 WSquPB‘TABwl ywzpz ngpg wyq

wq (s,t) _(tyu) (s,t) , (t,u) AB(u,) ,.CD(v,s) _ ,.CD(u,v),.AB(v,s)
Cwlqst wzqtucwq W3Guv Waqys (xABwl CDwy ~ *CDw**ABws xwz $w4 xwz $w4
. s,t t,u u,s (s,t) ,,(t,u) (us)
-1 (DWQtu W1qstP1 W2qus P2 aoyo(ulp)l b( )95;2,)2) wzqus w1qstp1 wqtupaoywlply b

+ Jl(Jl + 1) ( w2qus w1qst0 wqtupbgit) (t[;u)bg;’s) - qutu w1Gst0 Waqusp2 bg;élt)b(t’u)ygé,g)
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_cwa i)y (1) p(u0)  (0.9)

W1gst W3Guv Dosq wrgiups wiguspa w1 YwsprOws  Ywaps
wq (5,8),, ()  (10,0) p (0,5)
+ CWlet W4qus qu W2qtupP2 W3quvpP3 bwl yu.)2p2 yu.)gpg bw4
(5,8) o, (t,u), (u,5)
+ Z'upl(‘]l + 1)5W1qStP1 W2qtu P2 W3qusp3ywlp1yWQp2yW3p3

(s,t) , (t,u), (uv), (v,s)

1
_ wq _ ywq
+ 2 ( w1gstP1 wzquvPB.DWq W2qtu P2 WaquspPa leqstm w4qup4qu wW2qtu P2 wgquvpg,)ywlpl ywmy%% yw4p4
W1Gst k1 (8,01 1(s,u),,A(u,t)  rwiqstrl (;0)1 ) A(s,u) (u,t)
+ fwwut K2 quuq/}Am K1 bw wwznz ‘qusm w2 qut ’l/)A(—u'l n1w b

w1gstk1 (s;0)F , (s,u),),Au,t W1 Qstk1 (s,0)F, ) A(s,u) (ut)
4+ GU1dst ¥ Q/J( ) _ gwidst Pl

waquitiz wWesup P Awr k1 Jwp  Puwska Qo K W2Gut P2 Yoo

_i(—1Ym1—qts+ J1—m1—qesk1,),AE:s) (5U) B(u,t)
Z( 1) 2 fw2qutﬁ2 wqsu T Jimiky ABw’l/)wgmg

i1y S T g D)

Wqsu k2 W2qut w2
S \Me—Qut SR TW1gstR1 (s,t)F AB(s,u) (t,u)t
+ Z( 1) “ ‘7:]2 Mma—qiu k2 quu’l/)Awlnl w 7/} BJamoka
— m=—qus+§ FW1Ysth1 ;001 ) (u,8)t  AB(u,t)
Z( 1) v fw —M—Qusk wzqutwAwlnl BJmkLws (58)

where the summation over the indices that appear twice or more than twice is assumed

and we have introduced the abbreviated notations: w represents a pair, (J,m).

Similarly, we expand the action ([A.17) around the vacuum (2.34). We make a substi-
tution ¥ — Y +Y in (A17), where ¥; = —uL; and L; is given in (£:36). The result is

Spw = Sk + SB,

Slf;v;;e _ g / dt Ztr< XAB(t s)a X(S t) + L o XAB(t s) . I_;O X{(:g)
PW

_ % XABS) x (60 | 130;7(@ e

1
= 5L o xY 9 4 ¥ ) - (ipL o x YO0 4 py 1)
2
_ % o Al Lo AP — ipgg V(9 . Lo ALY

,S S sS S 3 S S
i o) — {5 Do) — Syl ’t)>,

‘ 1 [ dt ) 1 s S
SJZT—%V = 2—/ Ztr (—z@oX(t )[AO,XAB]( 4 §[A0aXAB](t’ )[AO,XAB]( )
9pw M

s,t
—uL o XS 7, XAPO0 L7, X)) [, X AP0
g&%xmwwxwxmwm SI7, Ao - 7, 4]0

OO Lo P — g, T (Lo Ag)e?
(z,uL o xY®s) ¢ My(tvs)) ) (17’ % ?)(s,t)

—(17 x Y)) (Y x Y

+ I [Ag, pA) 0 4yl g L [V gAY
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=00 (X P 4 {0 (XA, w:@]““) - 69

Here the suffix (s,t) stands for the (s,t) ‘large’ block of an N x N matrix, which is an
Ng(2js + 1) x Ny(2j; + 1) rectangular matrix, and s,¢ run from 1 to 7. The reader would
notice resemblance between (5.5) and (5.9). We make a mode expansion analogous to (5.4):

Js+it Js+Jt
E : E : me ®YJmJ jt) E : E : xABJm®YJm(]th)
J=|js—j¢| m=—J J=|js—j¢| m=—J
Js+it

TCED YD YD SR LA

K==%1 = ljs— jt|m7—U

Jstit J+3 Jstjt—
= > > e OV Z Z Cany @ Vi
J=ljs— Jt|m—fJf— J=|js— Jt|7§m—fJ
Js+it

Vb = Z > Z yﬁl Y ntiedo)

P==1Q=ljs—je| m=—Q

Jstijt J+1 Js+it
= > > ey, Gin T D Z s e (i)
J=|js—j¢| m=—J -1 J=|js—jt| m=—J
js“l‘jt_l

+ Z Z me 1®ij(jsﬂ) (5.10)

J:‘js*jd*l m=—J

In the above expressions, the both sides are Ng(2js + 1) x N¢(2j; + 1) matrices and the
modes in the righthand sides such as xﬁf}ébm are Ny x Ny matrices. Due to ({£.65), (b.7)
also holds for this case.

By substituting (b.10) into (5-9) and using ([.64), ([{.66) and (f.67), we obtain the
mode-expanded form of the theory around the vacuum (R.3d). By setting

4 N,
=S (5.11)
9rvs2 9pw

and

qst = Js — Jt; (5.12)

it is easy to see that the free part completely coincides with SIJ;TEE,Q in (p.§) while the
interaction part is obtained by attaching the hat to the vertex coefficients in Sgi g2 and
replacing g in the vertex coefficients with (jsj:). As seen in section .3, the vertex coeffi-
cients with the hat reduce to the vertex coefficients with the identification ¢ = j — 7’ in the
Ny — oo limit. Thus, in the Ny — oo limit, the interaction part also coincides with Sgi g2
in (5.§). Furthermore, the relation (f.13) is equivalent to (f.1)), and the relation (5.11)) is

consistent with (B.9). Thus we have completed the proof of the prediction 1).
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5.2 Topologically nontrivial configurations on fuzzy spheres

In this subsection, we comment on a relation of our results in the previous subsection with

the works [[[9, O]
The authors of [[[9, P{] considered a configuration

[71]
L o

as a topologically nontrivial gauge configuration, where (1 — (o = 2o (251 +1 = Ny +
C1, 2j2+1 = Ny+(2) with o an integer. They introduced the topological index on a fuzzy
sphere which can be defined for the configuration (5.13). Their topological index for (5.13)
is equal to %Kl — (2| = |al, and they claimed that it coincides with the winding number
m2(SU(2)/U(1)) in the continuum limit (Ny — oo limit). Actually, in the case in which
a = 1, they directly obtained from (.13) the 't Hooft-Polyakov monopole solution, which
has the winding number one.

According to our result in the previous subsection, the vacuum configuration of
SYMpy g2 corresponding to (f.1J) in the Ny — oo limit is

(i):H a 0 ,
2\ 0 -«

Ay =0,

- { tang d in region I

Ay = (5.14)

—cot § ® in region 1T ’

where we have extracted the SU(2) part separating the decoupled U(1) part. Namely, for
generic a, we found the gauge configuration on S? to which (p.13) reduces in the Ny — oo
limit. In the following, we check a consistency that the configuration (f.14)) has the winding
number |af.

We define a gauge invariant quantity by

Fuy = Tr(@Fyy — ®[Dy®, Dy ®))
= Tr(Vy (®Ay) — Vi (PAy) — @[V ®, Vyd]), (5.15)

where
P

d=—.
V2Trd?

(5.16)
Then the topological charge is given by
1

Q= & /d@dqb sin 0.F19 (5.17)
T

Actually, for configurations where f,y = Tr(Vy (®Ay) — Vi (®Ay)) is total derivative,
(B-17) reduces to

Q= _8% /d@dqﬁsin OTr(®[V, D, Vo d)), (5.18)

,31,



which is the winding number 75(SU(2)/U(1)). For the configuration (5.14), fu is not
total derivative while Tr(®[V,®, Vi ®]) vanishes. Q is evaluated from (F.17) as Q =
|a|. One can also obtain the same value for @ from (5.1§) by applying a singular gauge
transformation to (f.14). In the region 11, it takes the form

9 o—iad in @
COS 5¢€ Sin
v:< 2 ggw)_ (5.19)

— S1in 5 COS 56

The resultant gauge transformed configuration is

. . : i
& VJ“I)V:&< cosf sinfe >,

2 sinfe~ " — cos @

. . . Yoo
A1—>VTA1V+1'VTV1V:%< 0 ¢ >

—e~id ()
o o 3 _ PR 1e%0)
Ay — VAV +ivivey = £2 sinf - —cosfet) (5.20)
2 —cosfe @  _gind

In the region I, the same configuration of the fields are obtained by the gauge transformation
Vi1V, where Vi_ 5 is given in () Note that the single-valuedness of V' and the gauge
transformed fields requires o to be an integer. For the gauge transformed configuration
(F-20), f.» vanishes and (5.1§) indeed gives Q = |a|. Thus, for the configuration (f.14)
with generic «, |« is interpreted as the winding number. For o = £1, it is easy to check that
(b.20) is nothing but the 't Hooft-Polyakov monopole solution, which is smooth everywhere
on S%. For a # +1, although the gauge fields in (5.20) are not smooth everywhere, ® is
smooth everywhere and @ is given by (p.1§).

When ¢; — ¢» in (b.13) is an odd integer, one can also consider the corresponding
configuration on S? (F.14) in which 2« is equal to the odd integer ¢; — (3. This configu-
ration indeed gives @ = |a| which is a half odd integer. However, in this case, the gauge
transformation (5.19) does not exist, so that one cannot interpret this @ as the winding
number.

6. N=4SYMon Rx S*/Z; vs 2+1 SYM on R x S?

6.1 Embedding of SYMp, 53,7, into SYMp, g2

In this subsection, we prove the prediction 2) for the trivial vacuum of SYMpy g3,z -
According to the prediction 2), the theory around the trivial vacuum of SYMp, gs,7, with
U(N) gauge group is equivalent to the theory around the vacuum (B.11) of SYM g, g2 with
the relation (B.10) if a single period is extracted after the periodicity is imposed.

In (5.5), by setting ay = sk, Ny = N and making s run from —oo to oo, we obtain the
theory around the vacuum (B.11]) of SYMp,g2. Then, the monopole charge gy takes the
form

=t o)
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which depends only on s —t. This fact enables us to impose the following condition on the

blocks of the fields in (f.5):

(L) X(s,t)’ A(()s+1,t+1) _ A(()s,t)

)

Y_’v(s+1,t+1) _ ?(s,t), ¢A(s+1,t+1) _ T,Z)A(s’t). (62)

Namely, the (s,t) blocks of the fields depends only on s — ¢. It is natural to consider that
this condition corresponds to the periodicity on the gravity side. We show below that this
is indeed the case.

The condition for the modes of these fields follows from (.9):

G o U <)
A (6.3)
This condition allows us to rewrite the modes as
e = TAB gy ) = brmaas
yflivti) = YJmgsip> wf,f,f,;t) = ¢§1qu%, (6.4)

Note that every mode is an N x N matrix.
By using (6.1) and (p.4), we rewrite (b.§). Here we show calculation of some terms in

@) as examples. We first consider in S};’:;

; 1Y o
it t
S5 Y (v+3) didhaid 65
st J>|qst| m=—J
We set s —t =n, s=1so that n, [ take integers. We can rewrite (.5) as
ABt | AB
193D b o CRF) AN (66

noJ>| kn| m=—J

Moreover, by setting %n = 1, we obtain

00 J J 1 2
ABY _AB
—0m=—J rm=—J|~ - &
I J=0m=—Jm=—J mekz
We next consider in Sz‘i g2
s,tu Jy >|gst|,m1 J2>|qeul,me J3>|qus|,ma
AB AB
CJlmIQSt Jamagiu JSmSQusaoxABJlmlqst (bJ2m2QtuxJ3m3qus ngmgqtubJSmSQus)’ (6-8)

In (@), weset s—t=mn, t—u=mp, t =1linthefirsttermand s—t=n, u—s=p, s=11in
the second term, so that n, p, [ take integers. We also make exchanges for dummy variables
in the second term as Jy < J3, mg <> m3. Then we can rewrite (6.§) as

DD DD (6.9)

Lnp gy > En|,my Jo> |5 p|mo

,33,



AB
Z CJ1M1 En Jamakp J3M3§(—n—p)aoxABJ1M1 %n[bhﬂm Ap ngmgg(—n—p)]'
J3>|% (ntp)|,ms

(6.10)
k -k -k - :
We further set §n = m1, 5p = ma, 5(—n — p) = Mgy, and obtain
o J1 0 Jo 00 J3
l J1=0 ml,Thl:le J2=0 m2,m2:*J2 JSZO mg,ﬁ’Lg:*Jg ml,m27mgegz
AB
CJlmlfnl Jomoma nggrhganABJlmlfnl [bJQmQﬁLQ’ng)mgﬁLg]' (611)

We can easily rewrite the other terms in (f.§) in the same way. There appears in common
the overall factor ), in all the terms of the rewritten form of (b.§).

In appendix G, we give the mode expansion of the theory around the trivial vacuum of
SYMpy s3/z7, (G.1), which we obtained in our previous publication [BI]. In the rewritten
form of (F.§) obtained above, we make the following identifications

bimm = Bimms  Yimimnp = Admip,

A A A A
ergfn = XJrEfn’ ¢Jmfnli = \I]Jmfnn (612)

and input the relation (B.1(). Moreover, we divide this rewritten form by the overall factor
> ;- This procedure corresponds to extracting a single period. Then, it is easy to see that
this rewritten form of (f.§) coincides with ([G.1]).> Thus we have completed the proof of
the prediction 2) for the trivial vacuum of SYMpg, g3z, -

The configuration (B.11), the condition (6.9) and the procedure of dividing by 3,
physically mean that a circle with the radius~ k is constructed in the ® direction and
the (s,t) block of the fields is interpreted as the winding mode around the circle with the
winding number s —t. We have reinterpreted the winding number s —¢ as the Kaluza-Klein
momentum g(s —t) on a circle with the radius~ % This is similar to Taylor’s prescription
for the compactification (the T-duality) in matrix models [§. The difference between our
prescription and Taylor’s is the existence of the nontrivial gauge fields in (B.11]), which
makes a nontrivial fibration of the circle over S? rather than a direct product S? x S* so

that S3/7Z), is realized.

6.2 S3 from three matrices

Combining the result in section f.] with that in section [6.1 leads us to conclude that
the trivial vacuum of SYMp, gs /7, with gauge group U(N) is embedded in PWMM. The

3More precisely, the terms proportional to p differ in signature. However, this difference can be com-
pensated by the parity transformation, so that it does not matter.
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Figure 6: S3/Z is realized through a stack of fuzzy spheres. Each circle represents N coincident
fuzzy spheres.

corresponding vacuum configuration of PWMM is Y; = —uL;, where

(6.13)

L[js+1]

. L[js+1]

with 25, + 1 = Ng + ks. s runs from —oo to oo and the following periodicity for the
fluctuations of the fields around the vacuum (6.13) is imposed:

y(s+1t+1) _ ?(s,t)’ X1§rf+1,t+1) _ Xr(rf,t)a AGFLEFD) A\ (st) (6.14)

The vacuum (p.13) is interpreted as a stack of infinitely many sets of N coincident fuzzy
spheres (See figure f] ). Note that the Ny — oo limit must be taken from the beginning in
order for the configuration (p.13) to be realized.

It is interesting that S®/Zj is realized by the three matrices, Y7, Yo, Y3. It is well-
known that fuzzy sphere is realized by three matrices through the SU(2) algebra and in
the continuum limit an ordinary S? is realized with one of three directions remained on S?
as a Higgs field. In the present case, the Higgs field is utilized to make the U(1) bundle on
S2. In particular, in the k = 1 case, one realizes S® by the three matrices and obtains from
PWMM N = 4 SYM on R x S3, which is important in the AdS/CFT context, namely, dual
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to AdSs x S° in the global coordinates. In this case, the SU(2|4) symmetry is enhanced
to the SU(2,2|4) symmetry.

7. Summary and outlook

In this paper, we show that every vacuum of SYMpg, g2 is embedded in PWMM and the
trivial vacuum of SYMpg, g3/7, is embedded in SYMpg,g2. This is predicted from the
gravity duals through Lin-Maldacena’s method. Our results serve as a nontrivial check
of the gauge/gravity correspondence for the theories with SU(2[4) symmetry. As by-
products, we reveal the relationships among the spherical harmonics on S, the monopole
harmonics and the fuzzy sphere harmonics, and extend an extension of the compactification
(T-duality) in matrix models a la Taylor to that on spheres.

We treated only embedding of the trivial vacuum of SYMp, g3/7, into SYMp, g2.
Indeed, we have the vacuum configurations in SYMpgyg2 that would give the theories
around the nontrivial vacua of SYMp, g3/, . It is important to prove the prediction 2) for
the nontrivial vacua.

It is interesting to extend the T-duality in matrix models in this paper, which realizes
S3/Zy, as an S fibration over S2, to other fiber bundles and to obtain a general recipe for
such T-duality in matrix models.

SYMRpgy s3/7, with k =1 is nothing but N =4 SYM on R x S3, which has the unique
trivial vacuum and whose symmetry group is enhanced to SU(2,2|4). The gravity dual of
this theory is AdSs x S°. Hence as mentioned in section p.9, our results tell that N = 4
SYM on R x S? which is a gauge theory in a typical example of the AdS/CFT correspon-
dence is embedded in PWMM. However, this does not mean that we have obtained a matrix
model that regularizes N =4 SYM on R x S® preserving gauge symmetry and supersym-
metry and in principle enables us to perform a numerical simulation for the AdS/CFT
correspondence. Indeed, in the T-duality, we need to consider matrices with infinite size.
Presumably, by referring to the work [[£J], we can make the size of matrices finite with a
part of supersymmetry preserved and obtain a lattice gauge theory with few parameters
to be fine-tuned for N' =4 SYM on R x S3.

We hope to report progress in the above projects in the near future.

Note added. While we are writing the manuscript, we are informed that Aoki et al. are
preparing for a publication [[i4], which has some overlap with section [£.3 of the present

paper.
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A. Some conventions

In this appendix, we describe some conventions which we follow in the present paper.
We use the following metric for R x S3:

ds? g5 = —dt* + %(d@Q + sin? 0d¢? + (dip + cos 0dg)?), (A1)

where 0 < 0 < 7,0 < ¢ < 271, 0 < ¢ < 4m, and the radius of S is % The nonvanishing
components of the vierbeins and the spin connections are

-1

ep=p", eg=pn""

-1 -1

) e‘;:,u cos 0, ei:p ,

1 1 1 1
W12 = —Wo] = —5 cos Od¢ + §d1/), W3 = —Wsy = —§d9, w3l = —w13 = —5 sin 0d¢.
(A2)

We use the following metric for R x S?:
1
dst, g2 = —dt* + E(d92 + sin? Bdp?). (A.3)

Here the radius of S? is i The nonvanishing components of the dreibeins and the spin
connections are

by =p~t, b2 =p"lsing, kip= —ko = — cosfde. (A.4)

It is convenient for the mode expansions to rewrite the actions in the SU(4) symmetric
form. The 10-dimensional Lorentz group has been decomposed as SO(9,1) D SO(3,1) x
SO(6). We identify SO(6) with SU(4). We use A, B = 1,2,3,4 as the indices of 4 in
SU(4) while we have used m,n =4, --- ,9 as the indices of 6 in SO(6). The SO(6) vector,
6, corresponds to the antisymmetric tensor of 4 in SU(4). The SO(6) and SU(4) basis are
related as

1 , .
Xig = 5 (Xips +1Xiye) (1=1,2,3),
1
Xap=—Xpa, XAP=_xBA_XxI_ = xA4B— 5eABCDXCD. (A.5)

Similar identities hold for the gamma matrices:
A 1 . A
4 = 5(r1+3 — T ete. (A.6)

The 10-dimensional gamma matrices are decomposed as

a__ _a AB __ 0 _ﬁAB _ _T1TBA
=7"®ls, I'" =% AB =177 (A7)

,37,



where 4% is the 4-dimensional gamma matrix, satisfying {7%,7°} = 2n®, and ~v5 = 74! x
723, TAB satisfies {TAB, TCPY = ¢ABCD and pAB and AP are defined by

("P)op = 6405 — 5308, (74B)°P = ABCP. (A8)

The charge conjugation matrix and the chirality matrix are given by

Ci=0C , I =I"...T" = , A9
10 4®<140> V5 @ 0 —1, (A.9)
where (D)7 = —Cfolfa’mClo and CYy is the charge conjugation matrix in 4 dimensions.
The Majorana-Weyl spinor in 10 dimensions is decomposed as
)\A
A=Tprx=| "1 |, (A.10)
A_a
where A_4 is the charge conjugation of )\f:
Aa=0D =0T, e =+ (A.11)
We further fix the forms of 4-dimensional gamma matrices:
0 i0°
4= A2
v <i5“ 0 ) : (A.12)
where 0 = —15 and ¢! (i = 1,2,3) are the Pauli matrices. 6° = ¢" and ' = —0%. In

this convention,

15 0 -2 0
_ O, = . A.13
() (70 e

We introduce a two-component spinor:

= <1%A> : (A.14)

Using the SU(4) symmetric notation, one can rewrite the actions (R.1), (R.21)) and (2.23)
as follows:

SRXSS = Z—/dtw Tr <_ZFabFa — §DaXABDaX — §XABX

RxS3
+ivh Dov? + i o' DA + vl o [XAP (v)T]
1
— AT 02X 4, P + Z[XABaXCDHXAB7XCD]> ,

(A.15)
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1 dQ 1, - - 1o 1
Shxg2 = — /dt 22 Tr(—(DOY —ipLAg)? — 222 + =Dy X apDoXAP
Trxs? pro\2 22

1
r
Figh Doyt — - £t = Ayl g 4 gl (XAP, (0T

1. B 2
+5LXaz £XAB _ %XABXAB + —[Xap, Xcp|[XAB, XCOP]

—p*To? [XAB7¢B]>7 (A.16)
1 dt 1 1 7 1
Spw=—5—[ = Tr<_(D0Yi)2 — S(uY; — s€r]Y;, Yil)? + 5 DoXap Do X AP
9pw J W 2 2 2 2

2 1 1
— %XABXAB + §[Yz‘,XAB][YiaXAB] + Z[XAB,XCD][XAB,XCD]

+igh Doyt — Lyl + o'V, v4) + 91X, (0h)]

— wATUQ[XAB,IbB]). (A.17)

B. The plane wave matrix model

In this appendix, we give the relationship between the action (R.22) and the conventional
form of the action of the plane wave matrix model in the literature. We introduce another
representation of the 10-dimensional gamma matrices as follows:

I =116 ® (—i)o?, TM =M g g3, (B.1)

where WM is the SO(9) gamma matrix, which is a 16 x 16 real symmetric matrix, and
M = (i,m). In this representation, the charge conjugation matrix is C19 = I'?, and
I'!' = 114 ® 0. Then the Majorana-Weyl spinor ) is represented as

1 (U
-3 (%) -

where U is a real 16-components spinor. We make a redefinition, Y? — X! We also
rescale the fields, the coupling constant and the time as follows:

Ay — —3pgAo, XV — —pugXM W — —VBuzgu,
9 — /3ug, t — 3put. (B.3)
We finally obtain from (2.22)
1 g

1 . 1 o
S = [ dtTr [ ZDoXMDy XM — —_XiX" - —_X"mxX™ - ZLe.o XHXI XF
PWMM / r (2 0 0 18 79 18€”k [ ) ]

2 . . : ; N .
+g—6[XM,XN]2 + %\IJTDO\I/ - %\Iﬂfym\p + %\IﬂfyM XM, qx]) ,(B.4)

where Dy = 0; + ig[Ap, |. This is the conventional form of the action of the plane wave
matrix model seen in the literature.
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C. Supersymmetry transformations

In this appendix, we give the supersymmetry transformation rules for the theories with
SU(2]4) symmetry.
First, the action of PWMM (R.29) is invariant under the following supersymmetry
transformations:
§AY = —iflO\,
§Y = —ifiC'\,
OX™ = —inl'™ A\,
S\ = DY T + Do X™ Ty 4 Y iTi128y _ %erm12377
—i[Yz, YT n —4[Y*, XMy — §[Xm, XMy, (C.1)
where the parameter 7 is a 10-dimensional Majorana-Weyl spinor which satisfies dyn =
—%FOlQ?’n. Then, the theory has 16 supercharges.
Next, the action of SYMp, g2 (R.21) is invariant under the following transformations:
§AY = —iflO\,
§Y = —ifil\,
OX™ = —inl'™ A,
S\ = DoY T + Do XTIy — %erm”?’n L XM
i 1 e
—g X XTI §eijkzirﬂ’fn — ipL® AT, (C.2)
Again, 7 is a 10-dimensional Majorana-Weyl spinor which satisfies 0yn = —’A—ffomn. The
theory also has 16 supercharges.

Finally, the transformation rule for the original N = 4 SYM on R x S% (R.1) is as
follows:

5A, = iA[ge,
X, = iAo,
1 1 )
OX = | 5Eal™ + DX = S X, IV, — %[Xm, X, T . (C.3)

In this case, the parameter € is a conformal Killing spinor on R x S3. In order to write down
the conformal Killing spinor equation, we decompose € into the 4-dimensional Majorana-

A
e:<@>, (C.4)
€_A

where efi and e_4 are the 4-dimensional Majorana-Weyl spinors, and e_4 is the charge

Weyl spinors as

conjugation of efi (see Appendix A). Then, the conformal Killing spinor equation on R x 3

is written as

1
Vaef = i§*ya'yoejé, 756:? = eji. (C.5)
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A general solution of above equation has four real degrees of freedom for each sign, and
there are four SU(4) indices, so that the original 10-dimensional parameter ¢ possess 32
real degrees of freedom. In SYMp, 3,7, , there remain only supersymmetries caused by the
conformal Killing spinors that satisfy the lower sign of (IC.H), so that only 16 supercharges
survive.

D. Useful formulae for representations of SU(2)

In this appendix, we gather some useful formulae concerning the representations of SU(2),
most of which are found in [g]. The relationship between the Clebsch-Gordan coefficient
and the 3 — j symbol is

Jl J2 J3 Js3+ 2.J 1 J
= (=1)/3 m3+2J1 C'J3ms ‘ D1
<m1 mo M3 ( ) 2J5 + 1 J1 —m1 J2 —ma ( )

The Clebsch-Gordan coefficient possesses the following symmetries:

2msg + 1 _ 2ms + 1

_ Ji— 3 J: o Ji— 3 J-

- (_1) e 2my + 1CJ12m1mJQa -m3 ( e 2ms + 1CJ327Z;2J1 —m1
[2m3 + 1 _ [2m3 + 1

_ Ja+ 3 J _ Ja+ 3 J

= (_1) e 2my + 1CJ; *ZZ:: Jomg T (_ e 2my + 1CJ21 Trlm Jams’

= (—1ymme e (2)

Ji1—mi1 Jog —mo*

Jzms _ (_1\ym1+ma2—m3 ~Jzmsg
CJ1WL1 Jomo T ( 1) CJQmQ Jima

1)
J3ms
Jimi Jama

The recursion relation for the Clebsch-Gordan coefficient is

VEENF 1+ 1005 =
=VaFa)lata+1)Cpl 4+ VOFB)(bEF+1)C 500 (D.3)

In sections 4, we frequently use a summation formula for the Clebsch-Gordan coefficient,

J Jim!,
Z CJ??ZZ? szzCmef Joms 5J3J§5m3mga (D.4)
mimse
abc
> CoasCisvsCia o = (VT 2e + )24+ 1)CE 4, { 5 d} . (D)
afBd
ds b3 ey
D> CiferCed 1. CelanCii i
Byep
abc
=> V@b +1)2c+ 1)(2d+ 1)(2k + 1)Chr; Citpdd e f o (D.6)
In section [, the following identity is often used:
(Jm|et|gn)* = (=1)"™ (T —m|e®1|J —n). (D.7)
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In section [, we use a formula for the asymptotic relations between the 6 — j symbols and
the 3 — j symbols. If R > 1, one obtains

a b c (_1)a+b+c+2(d+e+f) a b c D8
d+Re+R f+R[ " V2R e—ff—dd—e)" (D8)

E. Vertex coefficients

In this appendix, we give expressions for the vertex coefficients we defined in section [
These expressions are obtained by using the formula ({.1). In the following, Q = J +%,

Q=J- @, U=J+ ITT”” and U = J + 1TT“. Suffices on these variables must be

understood appropriately.

Ty 2/ +1)2J3+1) -y Juii

J217Tnn21:7~’bn21 Jzmazms = \/ 2J1 + 1 CJ;;Z; nggc‘]glg;zl J3ymsg? (El)

. p1+p

Dy samaapn = (—1) 2T BRI+ D@1 + 20 + 1)@ +1)(2 + 203 +1)
Q1 Q11
¢ ; -

Xq Q221 CQTM1 Q2m2CQTm1 Qarna’ (E.2)

J J 0

ngmlﬁnpl Jamamzpz Jamazmsps

= \/6(2J1 + 1)(2J1 + 292 +1)(2J2 + 1)(2J2 + 2p3 + 1)(2J3 + 1)(2J5 + 203 + 1)

K (—1)- e g; g; i <Q1 Q2 Qs) <C:21 6522 ?3) ’ (B.3)
05 Qg 1 mi1 Mo M3 mi1 Mo M3
Uy U : 5
Fms e =V202J+1)2QL+1)2k+2)] U Uy 5 ¢ CM Jmcg;ﬁf; .
J J O
(E.4)
G e = (1) 2V6(2Jy +1)(2J; +2)(2] + 1) (2 + 2% + 1)
U, U : N
x QU Uz § o Ol 0, Cpim o (E.5)

Q Q1
F. Vertex coefficients of the fuzzy sphere harmonics

In this appendix, we give expressions for the traces of various three fuzzy sphere harmonics
which are defined in section [&.3.

5J1ma (5'5)
Jama(5'5") Jams (3" 5)
TA2T3—(—(' (4= Jimi J1 J2 J3
= (-1) VNo(2J2 +1)(2J3 + 1)CyIm o (F.1)
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pImi'5)
Jima(5'5")p1 Jama (5 5)p2

= \/3No(2] + 1)(2J1 + 1)(21 + 2% + 1)(2J2 + 1)(22 + 203 + 1)
Q1 Q11

X (_1)%+1+J+2Q2_C_C/_<”+j_jl QQ QQ 1 Clel Qama2 {{/ Ql QIQ}7 (FQ)
J 70 J 7 J

€J1M1(jj/)m Joma (3’5" p2 Jamsz(3"j)p3
= \J6No(2y + 1)(21 + 203 +1)(22 + 1)(2J2 + 203+ 1)(2]5 + 1)(2J5 + 203 + 1)
Q1 Q11

P1tp2tpr3+l A 3—C—(' =" ~ ) ) )
S R e AR R R
Q3 Q31
(F.3)
~Jima(5'7)k1
Jama (3’5" )k Jm(j5" )
= \/2N0(2(7 +1)(2J 4+ 1)2(2J5 + 1)(2J5 + 2)
~ v, 0 4 :
% (_1)U1+2chf<’f<”+jfj’ Us 02 % glg;bl . U/} U? J, , (F.4)
7 70 22 J g

gJ1m1(] J)k1
Joma (55" ) k2 Jm(5"5)p

= 6N 207 + 1)(25 + 1)(25 + 2)(2] + 1)(2] + 202 +1)

Uy Ul % ~ o~
P g7 (T My s gl ~ U U
x (—1) 500Gy Ly gy 8 gl LT '2612, . (F5)
0 Q 1 J 7

As mentioned in section [, In the Ny — oo, these reduce to the vertex coefficients in

appendix E.

G. Mode expansion of SYMpg, g3/7,

In this appendix, we describe the mode expansion of the theory around the trivial vacuum
of SYMp, 53,7, , which was obtained in our previous publication [B]]. The result is

_ afree int
Skxs3/2, = SRxSS/Z + SRXSS/Zk’

167 1 AB AB
S{%TEC*/Z;C 2 kud /dtTI‘{ Z 5(80XJm:naoXJmm /1'2(J+ ) XJm:/LXJmm)
gRXSS/Z p Jmm

+ Z Z 80 JmmpﬁoAJmmp 2p2(J + 1) ATJmmpAJmﬁpr)

p=—1 Jmm
+ Z ( J+1 JmmBJmm+Z#V J+1 60 JmmOBJmm>
Jmm
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3
+ Z Z < AJmmnaO\I’JmmH_}—K'u(‘]_}— ) AJmmn\IIJmmH>}

rk=x1 Jmm
. 1672
t Jimim
S;'?XSG/Z;C = 5 L 3 dt'Tr ZCJmm Jimima szzmgaOX o 1[BJmn’mAXJQQOQ]
IRrx 537, FH
_chmm C B B B [B B Xngzﬁmg][B X ])
2 Jimimi JamaorngYJImm Jomamsz Jamamg [P Jimima Jamazmzr > Jymgrng

Ty Jl(‘]l + 1)DJ2m2ﬁ12 Jimim10 Jmmelemlml [AJmmp, Xnggmg]

Jmm Jimimy B
+_CJ1m1fn1 nggmg,DJmm Jamamape Jamamapy [X AJ2m2mzp2]

[Xnggmg’ AJ4m4fn4p4]

XJ1m1m1 XJQWLQmQH

Jmm
+ZCJ1m1ﬁ7,1 JQQOQCJmﬁm Jzmazms J4m4ﬁ7,4[ XJ3m3m37 XJ4m4m4]

_ZDJmﬁ”L Jlmlﬁllpl nggﬁ”bgpg 80AJ1m1ﬁ11p1 [BJmﬁ’H AJQWLQﬁ”LQpQ]

_lu’ \Y Jl(Jl + 1)DJ2WL217~”L2 J1m1m10 Jmﬁ”LpBJlmlﬁ”Ll [AJmﬁ’Lpa Bnggﬁ”LQ]

1 .
Jmm
_5 Jimimy nggﬁ13DJmm Jomaomapz Jamamapy [BJlmlml ) AJ2m2m2p2]

[BJSmens’ AJ4m4fn4p4]

Y
_25/)1(‘]1 + 1)5J1m1ﬁ’1,1p1 Jamamz p2 Jsmsﬁ”bf,psAJlmlﬁ”Llpl [AJ2m2m2p2’AJ3m3ﬁ”L3p3]

Jmm
+Z’DJ1m1ﬁ11p1 J3m3ﬁ13p3DJmfn Jomamape Jamarmapa [AJlmlmlpl ) AJ2m2m2p2]

[Anggﬁ”L'g,pg? AJ4m4fn4p4]

Jimimi k1 - A
fnggmgng Jmm\I/AJlmlmllil [BJmm’ \IIJ2m27712H2]
Jimimiki
+gJ2m2ﬁ1252 erﬁp\I]AJlmlrhlnl [AJmmp; \I]J2m2m2ﬁ2]
_i(_1\ma— m2+ Jimimiky T T
Z( 1) ’7:J2 Mmoo ke Jmm\IIAJlmlmlﬁ1 [XJmm’ \I]Bszzmgm]
o a\—mptm+ 5L S —mythi kg A Jm
+Z( 1) 2 fngQﬁ’Lgng Jmﬁ’L\IlJlmlﬁlllﬂ [XA \I/nggmgﬁg]} (Gl)

where the summation over the indices that appear twice or more than twice in S RX 37,

is assumed and 7 only takes &n (n € Z).
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