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1. Introduction

The gauge/gravity (string) correspondence is one of the most important concepts in study-

ing nonperturbative aspects of string theory and gauge theories. An exhaustively inves-

tigated example is the AdS/CFT correspondence [1 – 3]. Recently, Lin and Maldacena

proposed the gauge/gravity correspondence for theories with SU(2|4) symmetry [4], which

include on the gauge theory side the plane wave matrix model (PWMM) [5], 2 + 1 su-

per Yang Mills on R × S2 (SYMR×S2) [6] and N = 4 super Yang Mills on R × S3/Zk

(SYMR×S3/Zk
). These theories share the common feature that they have many vacua, a

mass gap and a discrete energy spectrum. Lin and Maldacena developed a unified method

for providing the gravity dual of each vacuum of these theories. This method is an extension

of the so-called bubbling AdS geometry [7].

From Lin-Maldacena’s method, it is predicted that the theory around each vacuum of

SYMR×S2 and SYMR×S3/Zk
is embedded in PWMM. In this paper, we prove this prediction

for every vacuum of SYMR×S2 and the trivial vacuum of SYMR×S3/Zk
. Our results do not

only serve as a nontrivial check of the gauge/gravity correspondence for the theories with

SU(2|4) symmetry, but they are also interesting in the following aspects. First, we extend

the compactification (the T-duality) in matrix models a la Taylor [8] to that on spheres.

We realize S3/Zk as a U(1) bundle on S2 in matrices. Second, we clearly reveal relation-

ships among various spherical harmonics: the spherical harmonics on S3, the monopole

harmonics developed by Wu, Yang and others [9 – 12] and the harmonics on a set of con-

centric fuzzy spheres with different radii [13 – 15]. We give an alternative understanding

and a generalization of topologically nontrivial configurations and their topological charges

on fuzzy spheres studied in [16 – 20]. Our results would shed light on problems of de-

scribing curved space [21] and topological invariants in matrix models [22 – 24]. In what

follows, we review known facts on the gauge theory side and the gravity side of the theo-

ries with SU(2|4) symmetry as well as describe our strategy and the organization of this

paper.

In [4], PWMM, SYMR×S2 and SYMR×S3/Zk
were defined by truncations of N = 4

SYM on R × S3 (SYMR×S3) as follows. SYMR×S3 has the superconformal symmetry

SU(2, 2|4), whose bosonic subgroup is SO(2, 4) × SO(6), where SO(2, 4) is the conformal

group in 4 dimensions and SO(6) is the R-symmetry. SO(2, 4) has a subgroup SO(4)

that is the isometry of the S3 on which the theory is defined. SO(4) is identified with

SU(2) × S̃U(2), where we have marked one of two SU(2)’s with a tilde to focus on it.

The above theories are obtained by dividing the original SYMR×S3 by subgroups of S̃U(2).

Dividing it by full S̃U(2) gives rise to PWMM. Indeed this fact was first found in [25].1

Dividing SYMR×S3 by Zk gives rise to SYMR×S3/Zk
. In a coordinate system of S3 defined

in appendix A, this corresponds to making an identification (θ, φ, ψ) ∼ (θ, φ, ψ + 4π
k ). The

k → ∞ limit of SYMR×S3/Zk
is nothing but SYMR×S2 . That is, SYMR×S2 is obtained

1We make a remark on a relation of PWMM with a supersymmetric quantum mechanics that is given

by the dimensional reduction of 10D N = 1 SYM to 1 + 0 dimensions. General mass deformation of this

quantum mechanics which preserves all supersymmetries was studied in [26], and it was recently shown in

[27] that the deformation is unique and gives PWMM.
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by dividing SYMR×S3 by U(1), in other words, by dimensionally reducing SYMR×S3 or

SYMR×S3/Zk
in the ψ direction. In [6], the trivial vacuum of SYMR×S2 was obtained by

removing fuzziness of fuzzy spheres in a vacuum of PWMM. By viewing this procedure

inversely, one finds that PWMM is obtained as a dimensional reduction of SYMR×S2. It

can be said that we achieve ‘inverse’ of these dimensional reductions in this paper, keeping

the philosophy of [28] in mind: we obtain SYMR×S3/Zk
from SYMR×S2 and SYMR×S2 from

PWMM. In section 2.1, we review these dimensional reductions.

The vacua of PWMM are characterized by configuration of concentric membrane fuzzy

spheres [5]. The vacua of SYMR×S2 are labeled by monopole charges and unbroken gauge

group [6, 4]. The vacua of SYMR×S3/Zk
are parameterized by the holonomy along nontrivial

generator of π1(S
3/Zk) [4]. In section 2.2, we review these facts, and we clarify correspon-

dence between the holonomy parameterizing the vacua of SYMR×S3/Zk
with k → ∞ and

the monopole charges and the unbroken gauge group labeling the vacua of SYMR×S2.

On the gravity side, Lin and Maldacena reduced the problem of finding a supergravity

solution dual to each vacuum of the above theories to the problem of finding an axially

symmetric solution to the 3-dimensional Laplace equation for the electrostatic potential,

where the boundary condition involves charged conducting disks and a background po-

tential. Each theory is specified by a background potential and each vacuum is specified

by a configuration of charged conducting disks. In section 3.1, we review Lin-Maldacena’s

method and the one-to-one correspondences between the configurations of charged conduct-

ing disks and the vacua. In particular, by using the correspondence described in section 2.2,

we clarify the one-to-one correspondence between the configurations of charged conduct-

ing disks and the monopole charges and the unbroken gauge group labeling the vacua of

SYMR×S2.

In section 3.2, from the one-to-one correspondences between the configurations of

charged conducting disks and the vacua, we obtain the following two predictions about

relations between the vacua of different gauge theories: if the gauge/gravity correspon-

dence for the theories with SU(2|4) symmetry is valid, 1) the theory around each vacuum of

SYMR×S2 is embedded in PWMM and 2) the theory around each vacuum of SYMR×S3/Zk
is

embedded in SYMR×S2 . More precisely, 1) the theory around each vacuum of SYMR×S2 is

equivalent to the theory around a certain vacuum of PWMM and 2) the theory around each

vacuum of SYMR×S3/Zk
is equivalent to the theory around a certain vacuum of SYMR×S2

with a periodicity imposed. In [6], the prediction 1) for the trivial vacuum of SYMR×S2 was

already shown as mentioned above, and its consistency with the gravity duals was recently

shown in [29]. The prediction 1) for some nontrivial vacua of SYMR×S2 was also suggested

in [6, 30]. We give a complete proof of the prediction 1) for generic nontrivial vacua of

SYMR×S2 in this paper. Combining the predictions 1) and 2) leads to a remarkable state-

ment that the theory around every vacuum of SYMR×S3/Zk
and SYMR×S2 is embedded in

PWMM.

In order to prove the predictions, we make harmonic expansions for the theories around

various vacua. We use the spherical harmonics on S3, the monopole harmonics on S2

and the harmonics on a set of fuzzy spheres with different radii, which we call the fuzzy

sphere harmonics. In section 4, as a preparation for the proofs, we describe properties of
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these harmonics. In section 4.1, we recall the properties of the spherical harmonics on S3

summarized in [31] and add some new results. In section 4.2, we generalize the results on

the monopole harmonics in [9 – 12] and reveal relationship between the monopole harmonics

and the spherical harmonics on S3. In section 4.3, we study the fuzzy sphere harmonics,

which is an appropriate basis for the vector space of rectangular matrices [13 – 15]. We

further develop the works [13 – 15]: we consider general spin S fuzzy sphere harmonics and

derive various formula about them, and furthermore we clearly reveal their relationship

with the monopole harmonics. It is well known [32 – 34] that a basis for the vector space

of square matrices is the harmonics on a fuzzy sphere and is regarded as a regularization

of the ordinary spherical harmonics on S2, where the size of matrices plays a role of an

ultraviolet cut-off for the angular momentum. Analogously, a basis for the vector space

of rectangular matrices is the fuzzy sphere harmonics and is regarded as a regularization

of the monopole harmonics, where the size of matrices plays a role of an ultraviolet cut-

off while a half of the difference between the numbers of raws and columns is fixed and

identified with the monopole charge.

By using the results in sections 4.2 and 4.3, we prove the prediction 1) in section 5.1.

In section 5.2, we comment on a relation of our result in section 5.1 with the works [19, 20].

In section 6.1, by using the results in sections 4.1 and 4.2 and the mode expansion around

the trivial vacuum of SYMR×S3/Zk
performed in [31], we prove the prediction 2) for the

trivial vacuum of SYMR×S3/Zk
. Following the suggestion given by the gravity side, we

consider a configuration of matrices in SYMR×S2 with a periodicity and recover the ψ

direction by ‘T-duality’. This is an extension of the compactification (the T-duality) in

matrix models a la Taylor to that on spheres, where S3/Zk is realized as a nontrivial S1

fibration over S2 in matrices rather than a direct product. In section 6.2, we combine the

predictions 1) and 2) and make some comments on construction of S3 in terms of three

matrices.

Section 7 is devoted to summary and discussion. Some details are gathered in appen-

dices.

2. Theories with SU(2|4) symmetry

In this section, we review the gauge theory side of the theories with SU(2|4) symmetry with

some new insights. In section 2.1, starting with SYMR×S3 or SYMR×S3/Zk
, we first obtain

SYMR×S2 by a dimensional reduction. After rewriting it using a 3-dimensional notation,

we again make a dimensional reduction for it to obtain PWMM. We fix our notation in

the above process. In section 2.2, we classify vacua of the theories with SU(2|4) symmetry.

In particular, we clarify correspondence between the vacua of SYMR×S2 and the vacua of

SYMR×S3/Zk
with the k → ∞ limit.

2.1 Dimensional reductions from N = 4 SYM on R × S3

We start with SYMR×S3 [38 – 41]. Here the gauge group is U(N) and the radius of S3

is fixed to 2
µ . Borrowing the ten-dimensional notation, we can write down the action as

– 4 –
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follows:

SR×S3 =
1

g2
R×S3

∫

dt
dΩ3

(µ/2)3
Tr

(

−1

4
FabF

ab − 1

2
DaXmDaXm − 1

12
R̂X2

m

− i

2
λ̄ΓaDaλ − 1

2
λ̄Γm[Xm, λ] +

1

4
[Xm,Xn]2

)

, (2.1)

where a and b are the (3+1)-dimensional local Lorentz indices and run from 0 to 3, and m

runs from 4 to 9. Γa and Γm are the 10-dimensional gamma matrices, which satisfy

{Γa,Γb} = 2ηab, {Γm,Γn} = 2δmn, (2.2)

where ηab = diag(−1, 1, 1, 1). λ is the Majorana-Weyl spinor in 10 dimensions, which

satisfies

C10λ̄
T = λ, Γ11λ = λ, (2.3)

where C10 is the charge conjugation matrix. R̂ is the scalar curvature of S3 which is equal

to 3µ2

2 . The field strength and the covariant derivatives take the form

Fab = ∇aAb −∇bAa − i[Aa, Ab],

DaXm = ∇aXm − i[Aa,Xm], Daλ = ∇aλ − i[Aa, λ], (2.4)

where

∇aAb = eµ
a(∂µAb + ω c

µb Ac), ∇aXm = eµ
a∂µXm, ∇aλ = eµ

a(∂µλ +
1

4
ωbc

µ Γbcλ). (2.5)

In appendix A, we list the metric, the vierbeins and the spin connections for R × S3 used

in this paper. In this metric,

∫

dΩ3 =
1

8

∫ π

0
dθ

∫ 2π

0
dφ

∫ 4π

0
dψ sin θ, (2.6)

so that
∫

dΩ31 = 2π2.

SYMR×S3/Zk
is obtained by identifying the value at (θ, φ, ψ) with that at (θ, φ, ψ+ 4π

k )

for all the fields in SYMR×S3 . The relation between the coupling constant of SYMR×S3/Zk

and that of SYMR×S3 is given by

g2
R×S3 = kg2

R×S3/Zk
. (2.7)

The k → ∞ limit of this procedure can be regarded as a dimensional reduction. This

dimensional reduction with a redefinition of the gauge fields gives rise to SYMR×S2 .

In order to obtain SYMR×S2 , we make following replacements:

A = A0dt + Aθdθ + Aφdφ + Aψdψ → A0dt + Aθdθ + (Aφ +
1

µ
cos θΦ)dφ +

1

µ
Φdψ, (2.8)

We also assume that all the fields are independent of ψ. Then, using the metric, the

dreibeins and the spin connections for R × S2 listed in appendix A, it is easy to see that
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(2.1) is reduced to an action on R × S2. For instance, the space components of the gauge

field strength are reduced to quantities on R × S2 as

F12 → F12 − µΦ, F13 → D1Φ, F23 → D2Φ. (2.9)

The final result is

SR×S2 =
1

g2
R×S2

∫

dt
dΩ2

µ2
Tr

(

−1

4
Fa′b′F

a′b′ − 1

2
Da′ΦDa′

Φ − µ2

2
Φ2 + µF12Φ

−1

2
Da′XmDa′

Xm − µ2

8
X2

m +
1

4
[Xm,Xn]2 +

1

2
[Φ,Xm]2

− i

2
λ̄Γa′

Da′λ +
iµ

8
λ̄Γ123λ − 1

2
λ̄Γ3[Φ, λ] − 1

2
λ̄Γm[Xm, λ]

)

,(2.10)

where a′ and b′ are the (2 + 1)-dimensional local Lorentz indices and run from 0 to 2. The

radius of S2 is fixed to 1
µ and

∫

dΩ2 =

∫ π

0
dθ

∫ 2π

0
dφ sin θ, (2.11)

so that
∫

dΩ21 = 4π. When SYMR×S2 is identified with the k → ∞ limit of SYMR×S3/Zk
,

the coupling constant gR×S2 is expressed as

g2
R×S2 = lim

k→∞

kµg2
R×S3/Zk

4π
, (2.12)

so that kg2
R×S3/Zk

must be fixed in the k → ∞ limit. This relation will be used in compar-

ison with the gravity duals in section 3.1. (2.10) is SYMR×S2 obtained in [6].

For later convenience, we rewrite (2.10) using the 3-dimensional flat space notation,

which is represented by the orthogonal coordinates system (x1, x2, x3) or the polar coordi-

nates system (r, θ, φ). We introduce the flat space nabla

~∂ = ~ei∂i = ~er∂r + ~eθ
1

r
∂θ + ~eφ

1

r sin θ
∂φ, (2.13)

where ~ei (i = 1, 2, 3) are the unit vectors of xi directions, and ~er, ~eθ and ~eφ are the unit

vectors of the r, θ and φ directions, respectively. In the followings, the r-derivative in ~∂

does not contribute and r in ~∂ is fixed to 1
µ . We construct a 3-dimensional vector from Aθ

and Aφ as

~A = µAθ~eθ +
µ

sin θ
Aφ~eφ, (2.14)

and define a vector,

~Γ = Γi~ei. (2.15)

We make a unitary transformation for the fermion,

λ → e
π
4
Γ12e

θ
2
Γ31e

φ
2
Γ12λ. (2.16)

– 6 –
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Then, it is easy to see the transformation of the following two terms:

Tr

(

− i

2
λ̄Γa′

Da′λ

)

→ Tr

(

− i

2
λ̄Γ0D0λ − i

2
λ̄~Γ · (~er × ~D)λ − iµ

2
λ̄Γ123λ

)

, (2.17)

Tr

(

−1

2
λ̄Γ3[Φ, λ]

)

→ Tr

(

−1

2
λ̄~Γ · ~er[Φ, λ]

)

. (2.18)

where ~D = ~∂ − i[ ~A, ]. The other terms including the fermion are unchanged. Note that

the last term on the righthand side of (2.17) shifts the coefficient of the fermion mass term.

In order to rewrite the bosonic part, we define the following quantities:

~Y = ~erΦ + ~er × ~A,

~L(0) = −iµ−1~er × ~∂,

~Z = µ~Y + i(µ~L(0) × ~Y − ~Y × ~Y ),

~L = µ~L(0) − [~Y , ]. (2.19)

~Z is evaluated as

~Z = (−µΦ + F12)~er + D1Φ~eθ + D2Φ~eφ. (2.20)

Finally, we obtain

SR×S2 =
1

g2
R×S2

∫

dt
dΩ2

µ2
Tr

(
1

2
(D0

~Y − iµ~L(0)A0)
2 − 1

2
~Z2+ (2.21)

+
1

2
(D0Xm)2 +

1

2
(~LXm)2 − µ2

8
X2

m

+
1

4
[Xm,Xn]2 − i

2
λ̄Γ0D0λ +

1

2
λ̄~Γ · ~Lλ − 3iµ

8
λ̄Γ123λ − 1

2
λ̄Γm[Xm, λ]

)

.

It is now easy to obtain PWMM. We dimensionally reduce (2.21) to 1 + 0 dimensions

by dropping ~∂. The result is

SPW =
1

g2
PW

∫
dt

µ2
Tr

(
1

2
(D0Yi)

2 − 1

2
(µYi −

i

2
εijk[Yj , Yk])

2 +
1

2
(D0Xm)2 − µ2

8
X2

m

+
1

2
[Yi,Xm]2 +

1

4
[Xm,Xn]2 − i

2
λ̄Γ0D0λ − 3iµ

8
λ̄Γ123λ+

−1

2
λ̄Γi[Yi, λ] − 1

2
λ̄Γm[Xm, λ]

)

,

(2.22)

where 4πg2
PW = g2

R×S2 . In appendix B, we show that this is indeed equivalent to the action

of PWMM used in the literature.

In appendix C, we describe the supersymmetry transformations of all the theories. In

appendix A, we rewrite the actions (2.1), (2.21) and (2.22) in terms of the SU(4) symmetric

notation. We will make mode expansions for these SU(4) symmetric forms of the actions

in sections 5 and 6. In the remaining of the present paper, it is convenient to assume that

the gauge groups of PWMM, SYMR×S2 and SYMR×S3/Zk
are U(N̂), U(Ñ) and U(N),

respectively.
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2.2 Nontrivial vacua

While SYMR×S3 has the unique trivial vacuum, SYMR×S3/Zk
has many vacua. Those

vacua are given by the space of flat connections on S3/Zk. The space is parameterized by

the holonomy U along nontrivial generator of π1(S
3/Zk) = Zk up to gauge transformations.

U satisfies Uk = 1, so that U can be diagonalized as

U = diag(ei 2π
k

β1, ei 2π
k

β1, · · · , ei 2π
k

β1

︸ ︷︷ ︸

N1

, ei 2π
k

β2 , ei 2π
k

β2, · · · , ei 2π
k

β2

︸ ︷︷ ︸

N2

, · · · ,

ei 2π
k

βT , ei 2π
k

βT , · · · , ei 2π
k

βT

︸ ︷︷ ︸

NT

),

(2.23)

where all βs (s = 1, · · · , T, T ≤ k) are different integers mod k, and N1 + · · · + NT =

N . The vacua of SYMR×S3/Zk
are parameterized by U in (2.23). By applying the flat

connection condition to the supersymmetry transformation (C.3), it is easy to see that

these vacua preserve all 16 supercharges. In the vacuum (2.23), the gauge symmetry U(N)

is spontaneously broken to U(N1) × U(N2) × · · · × U(NT ).

Next, let us discuss the vacua of SYMR×S2. The condition for the vacua of SYMR×S2

is obtained from the k → ∞ limit of the condition for the vacua of SYMR×S3/Zk
, which

are given by the space of the flat connections on R × S3/Zk. Then, it is seen from (2.9)

that the condition for the vacua of SYMR×S2 is

F12 − µΦ = 0,

D1Φ = D2Φ = 0. (2.24)

On the other hand, the condition for vacua derived from (2.21) is

~Z = 0, (2.25)

which is indeed equivalent to (2.24) as seen from (2.20). In order to solve the equations

(2.24), we take a gauge in which Φ is diagonal. Then, the second equation in (2.24) implies

that Φ is constant. We parameterize Φ as

Φ =
µ

2
diag(α1, α1, · · · , α1

︸ ︷︷ ︸

N1

, α2, α2, · · · , α2
︸ ︷︷ ︸

N2

, · · · , αT , αT , · · · , αT
︸ ︷︷ ︸

NT

), (2.26)

where all αs’s (s = 1, · · · , T ) are different, and N1 + · · · + NT = Ñ . Then, it is seen from

the second equation in (2.24) that A1 and A2 are block-diagonal, where the sizes of the

blocks are N1, N2, · · · , NT . Using the remaining U(N1)×U(N2)× · · · ×U(NT ), we take a

gauge in which A1 = 0. Then, the first equation reduces to

∇1A2 + µ cot θA2 = µΦ. (2.27)

This equation can be easily solved by introducing patches on S2 as

A2 =

{

tan θ
2 Φ in region I

− cot θ
2 Φ in region II

, (2.28)

– 8 –
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where the region I corresponds to 0 ≤ θ < π
2 + ε while the region II corresponds to

π
2 − ε < θ ≤ π. To summarize, the solution to (2.24) is

Φ̂ =
µ

2
diag(α1, α1, · · · , α1

︸ ︷︷ ︸

N1

, α2, α2, · · · , α2
︸ ︷︷ ︸

N2

, · · · , αT , αT , · · · , αT
︸ ︷︷ ︸

NT

),

Â1 = 0,

Â2 =

{

tan θ
2 Φ̂ in region I

− cot θ
2 Φ̂ in region II

(2.29)

Each diagonal element of Â1 and Â2 is the configuration of a monopole with magnetic

charge qs = αs

2 . In the overlap of the regions I and II, the configurations in both patches

are transformed each other by the gauge transformation given by

VI→II = exp

(

i
2

µ
Φ̂φ

)

. (2.30)

It follows from the single-valuedness of VI→II that all αs’s (s = 1, · · · , T ) in (2.29) are

integers. This is nothing but Dirac’s quantization condition for the monopole charges.

One can understand this condition from a different point of view as follows. In the k → ∞
limit, each vacuum of SYMR×S3/Zk

would reduce to a vacuum of SYMR×S2. As mentioned

in the previous subsection, S3/Zk is obtained by making an identification on S3, (θ, φ, ψ) ∼
(θ, φ, ψ+ 4π

k ). A generator of π1(S
3/Zk) is a non-contractible loop, C : (π

2 , 0, ψ) ψ ∈ [0, 4π
k ].

The holonomy along this loop is

U = P exp

[

i

∫ 4π
k

0
Aψdψ

]

. (2.31)

In the k → ∞ limit, from (2.8), this reduces to

U = exp

[

i
4π

k

1

µ
Φ(θ, φ)

]

. (2.32)

Substituting (2.26) into (2.32) yields

U = diag(ei 2π
k

α1 , ei 2π
k

α1 , · · · , ei 2π
k

α1

︸ ︷︷ ︸

N1

, ei 2π
k

α2 , ei 2π
k

α2 , · · · , ei 2π
k

α2

︸ ︷︷ ︸

N2

, · · · ,

ei 2π
k

αT , ei 2π
k

αT , · · · , ei 2π
k

αT

︸ ︷︷ ︸

NT

).

(2.33)

The condition Uk = 1 indeed implies that all αs’s (s = 1, · · · , T ) are integers. This

consideration also clarifies correspondence between the vacua of SYMR×S3/Zk
with the k →

∞ limit and the vacua of SYMR×S2 . Using (C.2), it is easy to show that the vacua (2.29)

preserve all 16 supercharges. In the vacuum (2.29), the gauge group U(Ñ) is spontaneously

broken to U(N1) × U(N2) × · · · × U(NT ).
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Finally, we discuss the vacua of PWMM. The condition for the vacua would be obtained

by dropping the derivative in (2.25). The result is

µYi −
i

2
εijk[Yj , Yk] = 0. (2.34)

This condition is also read off directly from (2.22). The general solution to the equation

(2.34) is

Yi = −µLi, (2.35)

where Li is a representation matrix for a N̂-dimensional representation of SU(2), which is

in general reducible, and satisfies [Li, Lj ] = iεijkLk. One can decompose it into irreducible

pieces as

Li =
































N1

︷

︸︸

︷

L
[j1]
i · · ·

L
[j1]
i

N2

︷

︸︸

︷

L
[j2]
i · · ·

L
[j2]
i

· · · NT

︷

︸︸

︷

L
[jT ]
i · · ·

L
[jT ]
i
































(2.36)

where L
[js]
i (s = 1, · · · , T ) stands for the (2js + 1) × (2js + 1) representation matrix for

the spin js representation of SU(2) and satisfies

[L
[js]
i , L

[js]
j ] = iεijkL

[js]
k ,

(L
[js]
i )2 = js(js + 1)12js+1, (2.37)

and

(2j1 + 1)N1 + (2j2 + 1)N2 + · · · + (2jT + 1)NT = N̂ . (2.38)

The vacuum (2.36) can be interpreted as a set of coincident Ns fuzzy spheres with the

radius µ
√

js(js + 1) (s = 1, · · · , T ), where all the fuzzy spheres are concentric. One can

see from (C.1) that this vacuum preserves all 16 supercharges. In this vacuum, the gauge

symmetry U(N̂ ) is spontaneously broken to U(N1) × U(N2) × · · · × U(NT ).
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3. Gravity duals

In this section, we consider the gravity duals of the theories with SU(2|4) symmetry. In

section 3.1, we review the electrostatics problem that gives the gravity dual of each vacuum

of these theories. In section 3.2, from relations between the configurations of conducting

disks for the vacua, we obtain two predictions on relations between the vacua of different

theories.

3.1 Electrostatics problem

It was shown in [4] that a general smooth solution of type IIA supergravity that preserves

the SU(2|4) symmetry is characterized by a single function V (ρ, η) and takes the form

ds2
10 =

(

V̈ − 2V̇

−V ′′

){

−4
V̈

V̈ − 2V̇
dt2 +

−2V ′′

V̇
(dρ2 + dη2) + 4dΩ2

5 + 2
V ′′V̇
∆

dΩ2
2

}

,

e4φ =
4(V̈ − 2V̇ )3

−V ′′V̇ 2∆2
,

C1 = − 2V̇ ′V̇

V̈ − 2V̇
dt,

F4 = dC3, C3 = −4
V̇ 2V ′′

∆
dt ∧ d2Ω,

H3 = dB2, B2 =

(

V̇ V̇ ′

∆
+ η

)

d2Ω,

∆ = (V̈ − 2V̇ )V ′′ − (V̇ ′)2, (3.1)

where the dot and the prime stands for the derivatives with respect to log ρ and η, respec-

tively. V can be regarded as an electrostatic potential for an axially symmetric system

with conducting disks and a background potential. ρ is the distance from the center

axis and η is the coordinate in the direction along the center axis. V is decomposed as

V = Vb(ρ, η)+ v(ρ, η), where Vb is the background potential, and v is determined by a con-

figuration of conducting disks. Each theory is specified by Vb and each vacuum is specified

by a configuration of conducting disks. The distance d between two disks is proportional

to the NS 5-brane charge, d = π
2 N5, while the electric charge Q on a disk is proportional

to the D2-brane charge, Q = π2

8 N2.

The background potential for SYMR×S3/Zk
is

Vb = W (ρ2 − 2η2), (3.2)

where W = c/kg2
R×S3/Zk

with c a constant [4]. In this case, the system is periodic with

respect to η with the period π
2 k, and the total NS 5-brane charge is k. One can concentrate

a region 0 ≤ η ≤ π
2 k, where one can place conducting disks at η = 0, π

2 , · · · , π
2 (k − 1). For

the vacuum (2.23), T disks are located at η1 = π
2 β1, η2 = π

2 β2, · · · , ηT = π
2 βT . The electric

charges on these disks are equal to π2

8 N1,
π2

8 N2, · · · , π2

8 NT , respectively. Figure 1 shows

this configuration of conducting disks.
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η

ρ

πk/2

0

πβ1/2

πβ2/2

πβT /2

π2N1/8

π2N2/8

π2NT /8

Figure 1: Configuration of conducting disks for (2.23)

SYMR×S2 corresponds to the k → ∞ limit of SYMR×S3/Zk
. For SYMR×S2 , the region

of η becomes infinite. The background potential for SYMR×S2 is given by

Vb = W̃ (ρ2 − 2η2), (3.3)

where W̃ is given by the k → ∞ limit of W , so that kg2
R×S3/Zk

must be fixed. This

is consistent with the result in the gauge theory side, and from (2.12) W̃ turns out to

be cµ/4πg2
R×S2 . By using the correspondence between the vacua of SYMR×S3/Zk

with

the k → ∞ limit and the vacua of SYMR×S2 seen in the previous subsection, it is easy

to construct a configuration of conducting disks for each vacuum of SYMR×S2 . For the

vacuum (2.33), there are T disks located at η1 = π
2 α1, η2 = π

2 α2, · · · , ηT = π
2 αT . The

electric charges on these disks are equal to π2

8 N1,
π2

8 N2, · · · , π2

8 NT , respectively. Figure 2

shows this configuration of conducting disks.

The background potential for PWMM is

Vb = Ŵ (ρ2η − 2

3
η3), (3.4)

where Ŵ is represented in terms of a certain function h as [29]

Ŵ =
1

g2
PW

h(g2
PW N̂). (3.5)

It was pointed out in [29] that the correspondence between the trivial vacuum of SYMR×S2

and a certain vacuum of PWMM shown in [6] is consistent with the gravity side only if

the function h approaches some constant h∞ at large values of its argument. Namely, this

behavior of h is true if the gauge/gravity correspondence for the theories with SU(2|4)
symmetry is valid. We assume this behavior, and we will use this assumption to obtain the
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η

ρ

π2N1/8

π2N2/8

π2NT /8

πα1/2

πα2/2

παT /2

Figure 2: Configuration of conducting disks for (2.29)

η

ρ

π(2j1 + 1)/2

π(2j2 + 1)/2

π(2jT + 1)/2

π2N1/8

π2N2/8

π2NT /8

0

Figure 3: Configuration of conducting disks for (2.36)

prediction 1). In the case of PWMM, only the region η ≥ 0 is meaningful. There is always

a infinitely large disk sitting at η = 0. For the vacuum (2.36), there are T disks other than

this disk. They are located at η1 = π
2 (2j1 + 1), η2 = π

2 (2j2 + 1), · · · , ηT = π
2 (2jT + 1). The

electric charges on these disks are equal to π2

8 N1,
π2

8 N2, · · · , π2

8 NT , respectively. Figure 3

shows this configuration of conducting disks.

3.2 Predictions on relations between vacua

We first consider a limit that transforms a vacuum of PWMM into a vacuum of SYMR×S2 .

Naively, by moving the infinitely large disk in a configuration for a vacuum of PWMM away
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to infinity as in figure 4, one obtains a configuration of disks for a vacuum of SYMR×S2 .

This motivates us to take the following limit. We parameterize the positions of the disks

for a vacuum of PWMM, which are proportional to the dimensions of representations of

SU(2) in the gauge theory, as

2js + 1 = N0 + ζs,

ηs = η0 + η̃s,

η0 =
π

2
N0, η̃s =

π

2
ζs, (3.6)

where N0 and ζs are integers. Under a shift η → η0 + η, the background potential (3.4) is

transformed as

Vb → −2

3
Ŵη3

0 − 2Ŵη2
0η + Ŵη0(ρ

2 − 2η2) + Ŵ (ηρ2 − 2

3
η3) (3.7)

The first and second terms on the righthand side do not contribute to the Laplace equation,

the boundary condition for V and the geometry. In the limit,

η0 → ∞, Ŵ → 0, Ŵ η0 = W̃ = fixed, (3.8)

the last term vanishes and only the third term survives resulting in the background potential

for SYMR×S2. In the T = 1 case, it was explicitly shown in [29] that the charge Q1 can be

fixed in this limit. It is reasonable to expect that all the charges Qs’s (s = 1, · · · , T ) can be

fixed in this limit for generic T . Hence, the limit (3.8) indeed transforms the gravity dual

of a vacuum of PWMM to the gravity dual of a vacuum of SYMR×S2 (See figure 4). This

observation on the gravity side leads us to the prediction 1). Indeed, by using the relation

between W̃ and gR×S2 and the behavior of h in Ŵ discussed in the previous subsection,

we obtain the prediction 1) that on the gauge theory side the theory around the vacuum

(2.36) of PWMM coincides with the theory around the vacuum (2.29) of SYMR×S2 with

the identification ζs − ζt = αs − αt (s, t = 1, · · · , T ) in the limit

N0 → ∞,
N0

g2
PW

= fixed ∼ 1

g2
R×S2

. (3.9)

In section 5, we will prove the prediction 1).

Next, let us discuss the prediction 2). In the gravity dual of SYMR×S2, we consider

a configuration of disks which is periodic in the η direction with period π
2 k and extract a

single period. This procedure should yield the gravity dual of a theory around a vacuum

of SYMR×S3/Zk
. In the procedure, W = W̃ , so that the coupling constant of the resultant

theory around the vacuum of SYMR×S3/Zk
is given by a relation

g2
R×S3/Zk

=
4π

kµ
g2
R×S2 . (3.10)

In particular, figure 5 shows the case in which the trivial vacuum of SYMR×S3/Zk
with the

gauge group U(N) is obtained. The corresponding vacuum configuration of SYMR×S2 is

Φ̂ =
µ

2
(· · · , k(s − 1), · · · , k(s − 1)

︸ ︷︷ ︸

N

, ks, · · · , ks
︸ ︷︷ ︸

N

, k(s + 1), · · · , k(s + 1)
︸ ︷︷ ︸

N

, · · · ),
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→ ∞

ρ

ρ

η η

Figure 4: From a vacuum of the plane wave matrix model to a vacuum of 2 + 1 SYM on R × S2

Â1 = 0,

Â2 =

{

tan θ
2 Φ̂ in region I

− cot θ
2 Φ̂ in region II

(3.11)

where s runs from −∞ to ∞. In section 6, we will show that the theory around the trivial

vacuum of SYMR×S3/Zk
with the gauge group U(N) is obtained by the theory around the

vacuum labeled by (3.11) through the following procedure: we impose a condition which

corresponds to the periodicity on the gravity side and extract a single period, and input the

relation (3.10). This is a proof of the prediction 2) for the trivial vacuum of SYNR×S3/Zk
.

4. Spherical harmonics

In this section, we consider various spherical harmonics: the spherical harmonics on S3

in section 4.1, the monopole harmonics in section 4.2, and the fuzzy sphere harmonics in

section 4.3. We reveal relationship between the spherical harmonics on S3 and the monopole

harmonics in section 4.2, and relationship between the monopole harmonics and the fuzzy

sphere harmonics in section 4.3. The latter implies that the fuzzy sphere harmonics can

be regarded as a matrix regularization of the monopole harmonics. In this section, we

frequently use the formula for the representations of SU(2) gathered in appendix D.

4.1 Spherical harmonics on S3

In our previous publication [31], we summarized the properties of the spherical harmonics

based on [35 – 37] and found some new formula. In this subsection, we recall the properties

of the spherical harmonics on S3 based on [31] and add some new formula. We view S3 as

G/H = SO(4)/SO(3), where G = SO(4) = SU(2)× S̃U(2), and the subgroup H = SO(3)

is naturally identified with the local ‘Lorentz’ group SO(3) on S3. We denote the generators
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πk/2

πk/2

πk/2

πk/2

πk/2

η

η

ρ

ρ

π2N/8

π2N/8

π2N/8

π2N/8

π2N/8

π2N/8

Figure 5: From a vacuum of 2 + 1 SYM on R × S2 to the trivial vacuum of N = 4 SYM on

R × S3/Zk

of the SU(2) in G by Ji and those of the S̃U(2) in G by J̃i, where i = 1, 2, 3. Then, the

generators of H are represented by Si = Ji + J̃i.

The irreducible representations of G are labeled by two spins, J and J̃ , which specify

the irreducible representations of the SU(2) and the S̃U(2), respectively. We denote the

basis of the (J, J̃) representation by |Jm〉|J̃m̃〉. The basis of the spin S representation of

H is constructed in terms of |Jm〉|J̃m̃〉:

|Sn;JJ̃〉〉 =
∑

mm̃

CSn
Jm J̃m̃

|Jm〉|J̃m̃〉, (4.1)

where CSn
Jm J̃m̃

is the Clebsch-Gordan coefficient of SU(2) and the triangular inequality,

|J − J̃ | ≤ S ≤ J + J̃ , (4.2)

must be satisfied.

A definite form of the representative element of G/H is given by2

Υ(Ω) = e−iφJ3eiψJ̃3e−i θ
2
(J1−J̃1). (4.3)

The spin S spherical harmonics on S3 is given by

YSn
Jm,J̃m̃

(Ω) = NS
JJ̃

〈〈Sn;JJ̃ |Υ−1(Ω)|Jm〉|J̃ m̃〉, (4.4)

where NS
JJ̃

is the normalization factor fixed as

NS
JJ̃

=

√

(2J + 1)(2J̃ + 1)

2S + 1
. (4.5)

2We use the coordinate system given in appendix A, which is different from the one in [31].
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The spherical harmonics (4.4) satisfies the orthonormal condition

∫
dΩ3

2π2

∑

n

(YSn
J1m1,J̃1m̃1

)∗ YSn
J2m2,J̃2m̃2

= δJ1J2
δJ̃1J̃2

δm1m2
δm̃1m̃2

. (4.6)

The complex conjugate of YLn
Jm,J̃m̃

is given by

(YSn
Jm,J̃m̃

)∗ = (−1)−J+J̃−S+m−m̃+n YS −n
J −m,J̃ −m̃

. (4.7)

The covariant derivative is understood as an algebraic manipulation:

∇i YSn
Jm,J̃m̃

(Ω) = −iNS
JJ̃

〈〈Sn;JJ̃ |(Ji − J̃i)Υ
−1(Ω)|Jm〉|J̃m̃〉. (4.8)

Using this relation, it is easy to obtain the eigenvalue of the laplacian for the spin S

spherical harmonics:

∇2YSn
Jm,J̃m̃

= −(2J(J + 1) + 2J̃(J̃ + 1) − S(S + 1)) YSn
Jm,J̃m̃

. (4.9)

Moreover, using (4.8) and (D.5), we find a new formula

C1r
S′n′ Sn∇̌rYSn

Jm,J̃m̃
= −i(−1)J+J̃+S+S′−n′

(
√

3J(J + 1)(2J + 1)

{

S S′ 1

J J J̃

}

−(−1)S−S′

√

3J̃(J̃ + 1)(2J̃ + 1)

{

S S′ 1

J̃ J̃ J

})

Ỹ S′−n
Jm,J̃m̃

, (4.10)

where

∇̌± = ∓ 1√
2
(∇1 ± i∇2), ∇̌0 = ∇3. (4.11)

In particular, when S = S′, this formula reduces to

C1r
Sn′ Sn∇̌rYSn

Jm,J̃m̃
= i(−1)S−n′

√
3(J(J + 1) − J̃(J̃ + 1))Ỹ S−n

Jm,J̃m̃
. (4.12)

By using (D.2) and (D.7), we rewrite (4.4) to an expression, in which the connection to

the monopole harmonics defined in the next subsection is clear:

YSn
Jm,J̃m̃

= KSnn′CJm
J̃p Sn′

YJ̃pm̃, (4.13)

where

KSnn′ = 〈Sn|ei θ
2
S1eiφS3 |Sn′〉, (4.14)

and YJ̃pm̃ = Y00
J̃p,J̃m̃

, which is the scalar spherical harmonics. In [31], we found the compact

formula for the integral of the product of three spherical harmonics,

∫
dΩ3

2π2

∑

n1n2n3

(YS1n1

J1m1,J̃1m̃1

)∗ YS2n2

J2m2,J̃2m̃2

YS3n3

J3m3,J̃3m̃3

CS1n1

S2n2 S3n3
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=

√

(2S1 + 1)(2J2 + 1)(2J̃2 + 1)(2J3 + 1)(2J̃3 + 1)







J1 J̃1 S1

J2 J̃2 S2

J3 J̃3 S3







CJ1m1

J2m2 J3m3
C J̃1m̃1

J̃2m̃2 J̃3m̃3

.

(4.15)

Here we rederive the formula in a different way, starting with a particular case of the

formula,

∫
dΩ3

2π2
(YJ1m1m̃1

)∗YJ2m2m̃2
YJ3m3m̃3

=

√

(2J2 + 1)(2J3 + 1)

2J1 + 1
CJ1m1

J2m2 J3m3
CJ1m̃1

J2m̃2 J3m̃3
. (4.16)

By noting

∑

n1n2n3

CS1n1

S2n2 S3n3
(KS1n1n1

′)∗KS2n2n2
′KS3n3n3

′ = CS1n1
′

S2n2
′ S3n3

′ , (4.17)

we find that the lefthand side of (4.15) is equal to

CS1n1

S2n2 S3n3
CJ1m1

J̃1p1 S1n1

CJ2m2

J̃2p2 S2n2

CJ3m3

J̃3p3 S3n3

∫
dΩ3

2π2
(YJ̃1p1m̃1

)∗YJ̃2p2m̃2
YJ̃3p3m̃3

. (4.18)

Applying (4.16) and (D.6) to this expression leads to (4.15).

As an application of the above results, we consider scalars, vectors and spinors on

S3. The scalar corresponds to S = 0. From the triangular inequality (4.2), we see that

(J, J̃) = (J, J). We introduce a notation for the scalar:

YJmm̃ ≡ YS=0,n=0
Jm,Jm̃ . (4.19)

The vector corresponds to S = 1. Then, the triangular inequality implies that (J, J̃) takes

(J + 1, J) or (J, J + 1) or (J, J). We assign ρ = 1, ρ = −1 and ρ = 0 to these three cases,

respectively. We make a change of basis from the basis of the S3 eigenstates to the vector

basis:

Y1
Jm,J̃m̃

=
1√
2
(−Y11

Jm,J̃m̃
+ Y1−1

Jm,J̃m̃
),

Y2
Jm,J̃m̃

= − i√
2
(Y11

Jm,J̃m̃
+ Y1−1

Jm,J̃m̃
),

Y3
Jm,J̃m̃

= Y10
Jm,J̃m̃

. (4.20)

We introduce a notation for the vector:

Y ρ=1
Jmm̃i = iY i

J+1 m,Jm̃, Y ρ=−1
Jmm̃i = −iY i

Jm,J+1 m̃, Y ρ=0
Jmm̃i = Y i

Jm,Jm̃. (4.21)

Here the factors ±i on the right-hand side are just a convention. Note that Y 0
J=0 M=(0,0)i =

0. The spinor corresponds to S = 1
2 . The triangular inequality implies that (J, J̃) takes

(J + 1
2 , J) or (J, J + 1

2). We assign κ = 1 to the former and κ = −1 to the latter. We

introduce a notation for the spinor:

Y κ=1
Jmm̃α = YS= 1

2
,α

J+ 1

2
m,Jm̃

, Y κ=−1
Jmm̃α = YS= 1

2
,α

Jm,J+ 1

2
m̃

, (4.22)
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where α takes 1
2 and −1

2 . The orthonormality condition (4.6) is translated to the scalar,

the vector and the spinor as
∫

dΩ3

2π2
(YJ1m1m̃1

)∗YJ2m2m̃2
= δJ1J2

δm1m2δm̃1m̃2
,

∫
dΩ3

2π2
(Y ρ1

J1m1m̃1i)
∗Y ρ2

J2m2m̃2i = δρ1ρ2
δJ1J2

δm1m2
δm̃1m̃2

,
∫

dΩ3

2π2
(Y κ1

J1m1m̃1α)∗Y κ2

J2m2m̃2α = δκ1κ2
δJ1J2

δm1m2
δm̃1m̃2

, (4.23)

while their complex conjugates are read off from (4.7) as

(YJmm̃)∗ = (−1)m−m̃YJ−m−m̃,

(Y ρ
Jmm̃i)

∗ = (−1)m−m̃+1Y ρ
J−m−m̃i,

(Y κ
Jmm̃α)∗ = (−1)m−m̃+κα+1Y κ

J−m−m̃−α. (4.24)

The eigenvalues of the laplacian can be read off from (4.9):

∇2 YJmm̃ = −4J(J + 1) YJmm̃,

∇2 Y ±1
Jmm̃i = −(4J(J + 2) + 2) Y ±1

Jmm̃i,

∇2 Y 0
Jmm̃i = −(4J(J + 1) − 2) Y 0

Jmm̃i,

∇2 Y κ
Jmm̃α = −(2J(2J + 3) +

3

4
) Y κ

Jmm̃α. (4.25)

Using (4.10) yields identities,

∇i YJmm̃ = −2i
√

J(J + 1) Y 0
Jmm̃i,

∇i Y ρ
Jmm̃i = −2iδρ0

√

J(J + 1)YJmm̃,

εijk ∇j Y ρ
Jmm̃k = −2ρ(J + 1) Y ρ

Jmm̃i,

σi
αβ ∇i Y κ

Jmm̃β = −iκ(2J +
3

2
) Y κ

Jmm̃α. (4.26)

In [31], we defined various integrals of the product of three scalar or spinor or vector

harmonics, which we call vertex coefficients:

CJ1m1m̃1

J2m2m̃2 J3m3m̃3
≡

∫
dΩ3

2π2
(YJ1m1m̃1

)∗YJ2m2m̃2
YJ3m3m̃3

.

DJmm̃
J1m1m̃1ρ1 J2m2m̃2ρ2

≡
∫

dΩ3

2π2
(YJmm̃)∗Y ρ1

J1m1m̃1iY
ρ2

J2m2m̃2i.

EJ1m1m̃1ρ1 J2m2m̃2ρ2 J3m3m̃3ρ3
≡

∫
dΩ3

2π2
εijk Y ρ1

J1m1m̃1iY
ρ2

J2m2m̃2jY
ρ3

J3m3m̃3k.

FJ1m1m̃1κ1

J2m2m̃2κ2 Jmm̃ ≡
∫

dΩ3

2π2
(Y κ1

J1m1m̃1α)∗Y κ2

J2m2m̃2αYJmm̃.

GJ1m1m̃1κ1

J2m2m̃2κ2 Jmm̃ρ ≡
∫

dΩ3

2π2
(Y κ1

J1m1m̃1α)∗σi
αβY κ2

J2m2m̃2βY ρ
Jmm̃i. (4.27)

The expressions for the vertex coefficients are obtained by using the formula (4.15) and

given in appendix E.
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4.2 Monopole harmonics

The angular momentum operator in the presence of a monopole with the magnetic charge

q at the origin takes the form

~L(q) = ~x × (−i~∂ − ~A(q)) − q~er, (4.28)

where

~A(q) =

{
q
r tan θ

2~eφ in region I

− q
r cot θ

2~eφ in region II
(4.29)

The regions I and II are defined in section 2.2 and q can take 0,±1
2 ,±1,±3

2 , · · · due to

Dirac’s quantization condition, as explained in 2.2. Noting ~x = r~er, it is easy to see that

neither r nor the r-derivative appear in ~L(q) in the polar coordinates system. Note that
~L(0) is nothing but ~L(0) in (2.19). ~L(q) satisfies the SU(2) algebra:

[L
(q)
i , L

(q)
j ] = iεijkL

(q)
k . (4.30)

The monopole harmonic function (section), Yq,J,m(θ, φ), was constructed by Wu and Yang

[9], where J takes |q|, |q|+1, |q|+2, · · · and m takes −J,−J +1, · · · , J − 1, J . The explicit

expressions for Yq,J,m in the regions I and II are given in [9]. It is convenient for us to

multiply a phase and normalization factor:

ỸJmq = (−1)J
√

4πYq,J,m (4.31)

We see from [9, 11] that ỸJmq has the following properties.

L
(q)
± ỸJmq =

√

(J ∓ m)(J ± m + 1)ỸJm±1q,

L
(q)
3 ỸJmq = mỸJmq,

~L(q)2ỸJmq = J(J + 1)ỸJmq,
∫

dΩ2

4π
(ỸJmq)

∗ỸJ ′m′q = δJJ ′δmm′ ,

(ỸJmq)
∗ = (−1)m−qỸJ−m−q,

∫
dΩ2

4π
(ỸJ1m1q1

)∗ỸJ2m2q2
ỸJ3m3q3

= CJ1m1q1

J2m2q2 J3m3q3
for q1 = q2 + q3, (4.32)

where CJ1m1q1

J2m2q2 J3m3q3
is the same as the vertex coefficient defined in (4.27). We emphasize

that J = |q|, |q| + 1, |q| + 2, · · · and q = 0,±1
2 ,±1,±3

2 , · · · .
The spin S monopole harmonics is defined by

ỸSn
Jm,J̃q

= CJm
J̃p Sn

ỸJ̃pq. (4.33)

ỸSn
Jm,J̃q

possesses the properties similar to the ones which YSn
Jm,J̃m̃

possesses with the iden-

tification q = m̃. The counterparts of (4.6) and (4.7) are
∫

dΩ2

4π

∑

n

(ỸSn
J1m1,J̃1q

)∗ ỸSn
J2m2,J̃2q

= δJ1J2
δJ̃1J̃2

δm1m2
,
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(ỸSn
Jm,J̃q

)∗ = (−1)−J+J̃−S+m−q+n ỸS −n
J −m,J̃ −q

. (4.34)

The counterpart of (4.10) is

C1r
S′n′ SnĽ(q)

r ỸSn
Jm,J̃m̃

= (−1)−J−J̃+2S+n′+1
√

3J̃(J̃ + 1)(2J̃ + 1)

{

S S′ 1

J̃ J̃ J

}

ỸS′−n
Jm,J̃m̃

,

(4.35)

where Ľ
(q)
± = ∓ 1√

2
(L

(q)
1 ± iL

(q)
2 ), Ľ

(q)
0 = L

(q)
3 . By comparing (4.13) and (4.33) and using

the last identity in (4.32), we can prove the counterpart of (4.15) in the same way:

∫
dΩ2

4π

∑

n1n2n3

(ỸS1n1

J1m1,J̃1q1

)∗ ỸS2n2

J2m2,J̃2q2

ỸS3n3

J3m3,J̃3q3

CS1n1

S2n2 S3n3

=

√

(2S1 + 1)(2J2 + 1)(2J̃2 + 1)(2J3 + 1)(2J̃3 + 1)







J1 J̃1 S1

J2 J̃2 S2

J3 J̃3 S3







CJ1m1

J2m2 J3m3
C J̃1q1

J̃2q2 J̃3q3

,

(4.36)

where q1 must be equal to q2 + q3.

Here we make a remark. The similarity between the spherical harmonics on S3 and the

monopole harmonics seen above can be understood through (4.13), (4.33) and the following

equalities:

YJmm̃ = (−1)J−m
√

2J + 1 d
(J)
−m, m̃(θ)e−im̃(ψ−π/2)eim(φ+π/2),

ỸJmq =

{

(−1)J
√

2J + 1 d
(J)
−m, q(θ)ei(q+m)φ in region I

(−1)J
√

2J + 1 d
(J)
−m, q(θ)ei(−q+m)φ in region II

, (4.37)

where

d
(J)
m, m̃(θ) ≡ 〈Jm| eiθJ2 |Jm̃〉. (4.38)

The monopole scalar harmonics, the monopole vector harmonics and the monopole

spinor harmonics are defined similarly:

ỸJmq = Ỹ00
Jm,J̃q

,

Ỹ ρ=1
Jmqi = iỸ i

J+1 m,Jq, Ỹ ρ=−1
Jmqi = −iỸ i

Jm,J+1 q, Ỹ ρ=0
Jmqi = Ỹ i

Jm,Jq,

Ỹ κ=1
Jmqα = ỸS= 1

2
,α

J+ 1

2
m,Jq

, Ỹ κ=−1
Jmqα = ỸS= 1

2
,α

Jm,J+ 1

2
q
, (4.39)

where Ỹ i
Jm,J̃q

is an analogue of Y i
Jm,J̃m̃

and defined in terms of Ỹ1n
Jm,J̃q

’s as in (4.20). These

harmonics are also orthonormal:
∫

dΩ2

4π
(ỸJ1m1q)

∗ỸJ2m2q = δJ1J2
δm1m2

,
∫

dΩ2

4π
(Ỹ ρ1

J1m1qi)
∗Ỹ ρ2

J2m2qi = δρ1ρ2
δJ1J2

δm1m2
,
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∫
dΩ2

4π
(Ỹ κ1

J1m1qα)∗Ỹ κ2

J2m2qα = δκ1κ2
δJ1J2

δm1m2
. (4.40)

Their complex conjugates are analogous to those of the spherical harmonics on S3:

(ỸJmq)
∗ = (−1)m−qỸJ−m−q, (Ỹ ρ

Jmqi)
∗ = (−1)m−q+1Ỹ ρ

J−m−qi,

(Ỹ κ
Jmqα)∗ = (−1)m−q+κα+1Ỹ κ

J−m−q−α. (4.41)

Using the formula (4.35) yields the identities analogous to (4.26):

~L(q)ỸJmq =
√

J(J + 1) ~̃Y 0
Jmq,

~L(q) · ~̃Y ρ
Jmq =

√

J(J + 1)δρ0ỸJmq,

i~L(q) × ~̃Y ρ
Jmq + ~̃Y ρ

Jmq = ρ(J + 1)~̃Y ρ
Jmq,

(

~σ · ~L(q) +
3

4

)

Ỹ κ
Jmq = κ(J +

3

4
)Ỹ κ

Jmq. (4.42)

It follows from (4.15) and (4.36) that the integrals of various three monopole harmonics

are equal to the corresponding integrals on S3 (vertex coefficients) with the identification

q = m̃. Namely, the following identies hold.
∫

dΩ2

4π
(ỸJ1m1q1

)∗ỸJ2m2q2
ỸJ3m3q3

= CJ1m1q1

J2m2q2 J3m3q3
.

∫
dΩ2

4π
(ỸJmq)

∗Ỹ ρ1

J1m1q1iỸ
ρ2

J2m2q2i = DJmq
J1m1q1ρ1 J2m2q2ρ2

.
∫

dΩ2

4π
εijk Ỹ ρ1

J1m1q1iỸ
ρ2

J2m2q2jỸ
ρ3

J3m3q3k = EJ1m1q1ρ1 J2m2q2ρ2 J3m3q3ρ3
.

∫
dΩ2

4π
(Ỹ κ1

J1m1q1α)∗Ỹ κ2

J2m2q2αỸJmq = FJ1m1q1κ1

J2m2q2κ2 Jmq.
∫

dΩ2

4π
(Ỹ κ1

J1m1q1α)∗σi
αβỸ κ2

J2m2q2βỸ ρ
Jmqi = GJ1m1q1κ1

J2m2q2κ2 Jmqρ, (4.43)

where the monopoles charges must be conserved as in the last equality in (4.32).

4.3 Fuzzy sphere harmonics

Let us consider the set of linear maps from a (2j′ + 1)-dimensional complex vector space

Vj′ to a (2j+1)-dimensional complex vector space Vj , where j and j′ are non-negative half-

integers. We denote the set by Mjj′ . Mjj′ is identified with the set of (2j + 1)× (2j′ + 1)

rectangular complex matrices and is a ((2j + 1) × (2j′ + 1))-dimensional complex vector

space. It is convenient for us to consider the basis of the spin j and j′ representations of

SU(2) as a basis of Vj and Vj′ , respectively, and to construct a basis of Mjj′ as

|jr〉〈j′r′|, (r = −j,−j + 1, · · · , j − 1, j; r′ = −j′,−j′ + 1, · · · , j′ − 1, j′). (4.44)

Then, an arbitrary element of Mjj′, M , is expressed as

M =
∑

r,r′

Mrr′ |jr〉〈j′r′|. (4.45)
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One can define linear maps from Mjj′ to Mjj′ by its operation on the basis:

Li ◦ |jr〉〈j′r′| = Li|jr〉〈j′r′| − |jr〉〈j′r′|Li, (4.46)

where Li is a generator of SU(2). The matrix element Mrr′ is transformed under these

maps as

(Li ◦ M)rr′ = (L
[j]
i )rpMpr′ − Mrp′(L

[j′]
i )p′r′ , (4.47)

where L
[j]
i is the (2j + 1) × (2j + 1) representation matrix of the spin j representation of

SU(2). These maps form a ((2j + 1) × (2j′ + 1))-dimensional representation of SU(2),

which is in general reducible, because the following identity holds:

(Li ◦ Lj ◦ −Lj ◦ Li◦)|jr〉〈j′r′| = iεijkLk ◦ |jr〉〈j′r′|. (4.48)

For later convenience, we introduce a positive integer constant, N0, and reparameterize

the dimensions of Vj and Vj′ as

2j + 1 = N0 + ζ, 2j′ + 1 = N0 + ζ ′, (4.49)

where ζ and ζ ′ are integers which are greater than −N0. We will take the N0 → ∞ limit

shortly. It will turn out that the fuzzy sphere harmonics defined below are identified with

the monopole harmonics in this limit. We make a change of basis from the above basis to

a new basis,

Ŷ
(jj′)
Jm =

√

N0

∑

r,r′

(−1)−j′−r′− ζ+ζ′

2 CJm
jr j′−r′ |jr〉〈j′r′|, (4.50)

where J takes |j − j′|, |j − j′| + 1, · · · , j + j′ and m takes −J,−J + 1, · · · , J − 1, J . In

other words, J takes 1
2 |ζ − ζ ′|, 1

2 |ζ − ζ ′| + 1, · · · , 1
2(ζ + ζ ′) + N0 − 1. N0 plays a role of an

ultraviolet cut-off for the angular momentum. For a fixed J , Ŷ
(jj′)
Jm is the basis of the spin

J irreducible representation of SU(2). Namely, using (D.3), one can show

L± ◦ Ŷ
(jj′)
Jm =

√

(J ∓ m)(J ± m + 1)Ŷ
(jj′)
Jm±1,

L3 ◦ Ŷ
(jj′)
Jm = mŶ

(jj′)
Jm . (4.51)

These relations also imply

Li ◦ Li ◦ Ŷ
(jj′)
Jm = J(J + 1)Ŷ

(jj′)
Jm . (4.52)

Ŷ
(jj′)
Jm satisfies the orthonormality condition under the following normalized trace:

1

N0
tr(Ŷ

(jj′)†
J1m1

Ŷ
(jj′)
J2m2

) = δJ1J2
δm1m2

, (4.53)

where tr stands for the trace over (2j′ + 1) × (2j′ + 1) matrices. The hermitian conjugate

of Ŷ
(jj′)
Jm is evaluated as

Ŷ
(jj′)†
Jm = (−1)m−(j−j′)Ŷ

(j′j)
J−m. (4.54)

– 23 –



J
H
E
P
1
1
(
2
0
0
6
)
0
8
9

Using (D.5) yields

1

N0
tr(Ŷ

(j′j)†
J1m1

Ŷ
(j′j′′)
J2m2

Ŷ
(j′′j)
J3m3

)

= (−1)J1+2J3− 1

2
ζ− 3

2
ζ′−ζ′′

√

N0(2J2 + 1)(2J3 + 1)CJ1m1

J2m2 J3m3

{

J1 J2 J3

j′′ j j′

}

. (4.55)

One can see from (D.8) that in the N0 → ∞ limit this equality reduces to

1

N0
tr(Ŷ

(j′j)†
J1m1

Ŷ
(j′j′′)
J2m2

Ŷ
(j′′j)
J3m3

) =

√

(2J2 + 1)(2J3 + 1)

2J1 + 1
CJ1m1

J2m2 J3m3
C

J1(j′−j)
J2(j′−j′′) J3(j′′−j). (4.56)

Comparing the relations (4.51), (4.52), (4.53), (4.54) and (4.56) with the relations in (4.32),

one can see that Ŷ
(jj′)
Jm is identified with ỸJmq in the N0 → ∞ limit through the following

correspondence:

j − j′ ↔ q

Li◦ ↔ L
(q)
i

1

N0
tr ↔

∫
dΩ2

4π
. (4.57)

In this limit, the lower bound of J in Ŷ
(jj′)
Jm , |j−j′|, remains finite and indeed corresponds to

the monopole charge q while the upper bound of J goes to infinity, namely, the ultraviolet

cut-off is removed.

The analogue of (4.33) is defined by

ŶSn
Jm,J̃(jj′)

= CJm
J̃p Sn

Ŷ
(jj′)

J̃p
, (4.58)

which we call the spin S fuzzy sphere harmonics. ŶSn
Jm,J̃(jj′)

shares all the properties except

the integral of the product of three harmonics with ỸSn
Jm,J̃q

under the correspondence (4.57).

In the N0 → ∞ limit, the trace of the product of three fuzzy sphere harmonics also coincides

with the integral of the product of three monopole harmonics. The spin S fuzzy sphere

harmonics is, therefore, considered as a matrix regularization of the spin S monopole

harmonics. The counterparts of (4.34) are

∑

n

1

N0
tr(ŶSn†

J1m1,J̃1(jj′)
ỸSn

J2m2,J̃2(jj′)
) = δJ1J2

δJ̃1J̃2
δm1m2

,

ŶSn†
Jm,J̃(jj′)

= (−1)−J+J̃−S+m−(j−j′)+n ŶS −n
J −m,J̃ (j′j)

. (4.59)

The counterpart of (4.35) is

C1r
S′n′ SnĽr ◦ ŶSn

Jm,J̃(jj′)
= (−1)−J−J̃+2S+n′+1

√

3J̃(J̃ + 1)(2J̃ + 1)

{

S S′ 1

J̃ J̃ J

}

ŶS′−n
Jm,J̃(jj′)

,

(4.60)
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where Ľ±◦ = ∓ 1√
2
(L1 ± iL2)◦, Ľ0◦ = L3◦. Using (4.55) and (D.6), it is easy to prove the

following formula, which is the counterpart of (4.36),

∑

n1n2n3

1

N0
tr(ŶS1n1†

J1m1,J̃1(j′j)
ŶS2n2

J2m2,J̃2(j′j′′)
ŶS3n3

J3m3,J̃3(j′′j)
) CS1n1

S2n2 S3n3

= (−1)J̃1+2J̃3− 1

2
ζ− 3

2
ζ′−ζ′′

√

N0(2S1 + 1)(2J̃1 + 1)(2J2 + 1)(2J̃2 + 1)(2J3 + 1)(2J̃3 + 1)

×







J1 J̃1 S1

J2 J̃2 S2

J3 J̃3 S3







CJ1m1

J2m2 J3m3

{

J1 J2 J3

j′′ j j′

}

. (4.61)

One can see from (D.8) that in the N0 → ∞ limit, this formula reduces to

∑

n1n2n3

1

N0
tr(ŶS1n1†

J1m1,J̃1(j′j)
ŶS2n2

J2m2,J̃2(j′j′′)
ŶS3n3

J3m3,J̃3(j′′j)
) CS1n1

S2n2 S3n3

=

√

(2S1+1)(2J2+1)(2J̃2+1)(2J3+1)(2J̃3+1)







J1 J̃1 S1

J2 J̃2 S2

J3 J̃3 S3







CJ1m1

J2m2 J3m3
C J̃1j′−j

J̃2j′−j′′J̃3j′′−j
, (4.62)

which is equivalent to (4.36) with the identification j − j′ = q, as anticipated.

The fuzzy sphere scalar harmonics, the fuzzy sphere vector harmonics and the fuzzy

sphere spinor harmonics are defined similarly:

ŶJm(jj′) = Ŷ00
Jm,J̃(jj′)

= Ŷ
(jj′)
Jm ,

Ŷ ρ=1
Jm(jj′)i = iŶ i

J+1 m,J(jj′), Ŷ ρ=−1
Jm(jj′)i = −iŶ i

Jm,J+1 (jj′), Ŷ ρ=0
Jm(jj′)i = Ŷ i

Jm,J(jj′),

Ŷ κ=1
Jm(jj′)α = ŶS= 1

2
,α

J+ 1

2
m,J(jj′)

, Ŷ κ=−1
Jm(jj′)α = ŶS= 1

2
,α

Jm,J+ 1

2
(jj′)

, (4.63)

where Ŷ i
Jm,J̃(jj′)

is an analogue of Ỹ i
Jm,J̃q

and is expressed in terms of Ŷ1n
Jm,J̃(jj′)

’s. These

harmonics are also orthonormal:

1

N0
tr(Ŷ †

J1m1(jj′)ŶJ2m2(jj′)) = δJ1J2
δm1m2

,

1

N0
tr(Ŷ ρ1†

J1m1(jj′)iŶ
ρ2

J2m2(jj′)i) = δρ1ρ2
δJ1J2

δm1m2
,

1

N0
tr(Ŷ κ1†

J1m1(jj′)αŶ κ2

J2m2(jj′)α) = δκ1κ2
δJ1J2

δm1m2
. (4.64)

Their hermitian conjugates are analogous to the complex conjugates of the monopole har-

monics:

Ŷ †
Jm(jj′) = (−1)m−(j−j′)ŶJ−m(j′j),

Ŷ ρ†
Jm(jj′)i = (−1)m−(j−j′)+1Ŷ ρ

J−m(j′j)i,

Ŷ κ†
Jm(jj′)α = (−1)m−(j−j′)+κα+1Ŷ κ

J−m(j′j)−α. (4.65)
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Using the formula (4.60) yields the identities analogous to (4.26):

~L ◦ ŶJm(jj′) =
√

J(J + 1)
~̂
Y 0

Jm(jj′),

~L ◦ ·~̂Y ρ
Jm(jj′) =

√

J(J + 1)δρ0ŶJm(jj′),

i~L ◦ × ~̂
Y ρ

Jm(jj′) +
~̂
Y ρ

Jm(jj′) = ρ(J + 1)
~̂
Y ρ

Jm(jj′),
(

~σ · ~L ◦ +
3

4

)

Ŷ κ
Jm(jj′) = κ(J +

3

4
)Ŷ κ

Jm(jj′). (4.66)

We define the traces of various three fuzzy sphere harmonics, which are analogous to the

vertex coefficients:

ĈJ1m1(j′j)
J2m2(j′j′′) J3m3(j′′j) ≡

1

N0
tr(Ŷ †

J1m1(j′j)ŶJ2m2(j′j′′)ŶJ3m3(j′′j)).

D̂Jm(j′j)
J1m1(j′j′′)rho1 J2m2(j′′j)ρ2

≡ 1

N0
tr(Ŷ †

Jm(j′j)Ŷ
ρ1

J1m1(j′j′′)iŶ
ρ2

J2m2(j′′j)i).

ÊJ1m1(jj′)ρ1 J2m2(j′j′′)ρ2 J3m3(j′′j)ρ3
≡ εijk

1

N0
tr(Ŷ ρ1

J1m1(jj′)iŶ
ρ2

J2m2(j′j′′)j Ŷ
ρ3

J3m3(j′′j)k).

F̂J1m1(j′j)κ1

J2m2(j′j′′)κ2 Jm(j′′j) ≡
1

N0
tr(Ŷ κ1†

J1m1(j′j)αŶ κ2

J2m2(j′j′′)αŶJm(j′′j)).

ĜJ1m1(j′j)κ1

J2m2(j′j′′)κ2 Jm(j′′j)ρ ≡ 1

N0
tr(Ŷ κ1†

J1m1(j′j)ασi
αβ Ŷ κ2

J2m2(j′j′′)βŶ ρ
Jm(j′′j)i). (4.67)

These can be evaluated using (4.61) and the explicit expression are given in appendix F. We

see from (4.62) that these reduce to the corresponding quantities without the hat, namely

the vertex coefficients, with the identification j − j′ = q in the N0 → ∞ limit.

5. 2 + 1 SYM on R × S2 vs the plane wave matrix model

5.1 Embedding of SYMR×S2 into PWMM

In this subsection, we prove the prediction 1). Namely, we show that in the N0 → 0

limit the theory around the vacuum (2.36) in PWMM is equivalent to the one around the

vacuum (2.29) with the identification

js − jt =
1

2
(αs − αt) (5.1)

and the relation between the coupling constants in (3.9).

We expand the action (A.16) around the background

~̂Y = ~erΦ̂ + ~eφÂ1 − ~eθÂ2. (5.2)

We make a substitution ~Y → ~̂Y + ~Y in (A.16). The terms including ~Y in (A.16) are

evaluated as

(~LXAB)(s,t) → µ~L(qst)X
(s,t)
AB − [~Y ,XAB ](s,t),

~Z(s,t) → µ~Y (s,t) + iµ~L(qst) × ~Y (s,t) − i(~Y × ~Y )(s,t),
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(D0
~Y − iµ~L(0)A0)

(s,t) → (D0
~Y )(s,t) − iµ~L(qst)A

(s,t)
0 , (5.3)

where the suffix (s, t) stands for the (s, t) block of an Ñ × Ñ matrix, which is an Ns × Nt

rectangular matrix, and s, t run from 1 to T . The monopole charge qst is given by

qst =
1

2
(αs − αt). (5.4)

By using (5.3), we obtain the theory around the vacuum (2.29):

SR×S2 = Sfree
R×S2 + Sint

R×S2,

Sfree
R×S2 =

1

g2
R×S2

∫

dt
dΩ2

µ2

∑

s,t

tr

(

1

2
∂0X

AB(t,s)∂0X
(s,t)
AB

+
µ2

2
~L(qts)XAB(t,s) · ~L(qst)X

(s,t)
AB − µ2

8
XAB(t,s)X

(s,t)
AB

+
1

2
∂0

~Y (t,s) · ∂0
~Y (s,t) − 1

2
(iµ~L(qts) × ~Y (t,s) + µ~Y (t,s))

· (iµ~L(qst) × ~Y (s,t) + µ~Y (s,t))

− µ2

2
~L(qts)A

(t,s)
0 · ~L(qst)A

(s,t)
0 − iµ∂0

~Y (t,s) · ~L(qst)A
(s,t)
0

+ iψ
†(t,s)
A ∂0ψ

A(s,t) − µψ
†(t,s)
A ~σ · ~L(qst)ψA(s,t) − 3µ

4
ψ
†(t,s)
A ψA(s,t)

)

,

Sint
R×S2 =

1

g2
R×S2

∫

dt
dΩ2

µ2

∑

s,t

tr

(

−i∂0X
(t,s)
AB [A0,X

AB ](s,t) − 1

2
[A0,XAB ](t,s)[A0,X

AB ](s,t)

− µ~L(qts)X
(t,s)
AB · [~Y ,XAB ](s,t) +

1

2
[~Y ,XAB ](t,s) · [~Y ,XAB ](s,t)

+
1

4
[XAB ,XCD](t,s)[XAB ,XCD](s,t) − 1

2
[~Y ,A0]

(t,s) · [~Y ,A0]
(s,t)

− i∂0
~Y (t,s) · [A0, ~Y ](s,t) − µ[A0, ~Y ](t,s) · ~L(qst)A

(s,t)
0

+ i(iµ~L(qts) × ~Y (t,s) + µ~Y (t,s)) · (~Y × ~Y )(s,t)

+
1

2
(~Y × ~Y )(t,s) · (~Y × ~Y )(s,t)

+ ψ
†(t,s)
A [A0, ψ

A](s,t) + ψ
†(t,s)
A ~σ · [~Y , ψA](s,t)

− ψAT (t,s)σ2[XAB , ψB ](s,t) + ψ
†(t,s)
A σ2[XAB , ψ∗

B ](s,t)

)

, (5.5)

where tr should be understood as the trace over square matrices with a certain size which

are the products of some rectangular matrices.

Moreover, we make the mode expansion for the fields in terms of the monopole har-

monics as

A
(s,t)
0 =

∑

J≥|qst|

J∑

m=−J

b
(s,t)
Jm ỸJmqst , X

(s,t)
AB =

∑

J≥|qst|

J∑

m=−J

x
(s,t)
ABJmỸJmqst,
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ψA(s,t) =
∑

κ=±1

∑

Ũ≥|qst|

U∑

m=−U

ψ
A(s,t)
Jmκ Ỹ κ

Jmqst

=
∑

J≥|qst|

J+ 1

2∑

m=−J− 1

2

ψ
A(s,t)
Jm1 Ỹ 1

Jmqst
+

∑

J≥|qst|− 1

2

J∑

m=−J

ψ
A(s,t)
Jm−1Ỹ

−1
Jmqst

,

~Y (s,t) =

1∑

ρ=−1

∑

Q̃≥|qst|

Q
∑

m=−Q

y
(s,t)
Jmρ

~̃Y ρ
Jmqst

,

=
∑

J≥|qst|

J+1∑

m=−J−1

y
(s,t)
Jm1

~̃Y 1
Jmqst

+
∑

J≥|qst|

J∑

m=−J

y
(s,t)
Jm0

~̃Y 0
Jmqst

+
∑

J≥|qst|−1

J∑

m=−J

y
(s,t)
Jm−1

~̃Y −1
Jmqst

, (5.6)

where U ≡ J + 1+κ
4 , Ũ ≡ J + 1−κ

4 , Q ≡ J + (1+ρ)ρ
2 and Q̃ ≡ J − (1−ρ)ρ

2 . Due to (4.41), the

conditions A
(s,t)†
0 = A

(t,s)
0 ,X

(s,t)†
AB = XAB(t,s) and ~Y (s,t)† = ~Y (t,s) imply

b
(s,t)†
Jm = (−1)m−qstb

(t,s)
J−m, x

(s,t)†
ABJm = (−1)m−qstx

AB(t,s)
J−m ,

y
(s,t)†
Jmρ = (−1)m−qst+1y

(t,s)
J−mρ. (5.7)

By substituting (5.6) into (5.5) and using (4.40), (4.42) and (4.43), we obtain the mode-
expanded form of the theory:

Sfree

R×S2 =
4π

g2
R×S2

∫
dt

µ2
tr

[

1

2
∂0x

(s,t)†
ABω ∂0x

(s,t)
ABω − µ2

2

(

J +
1

2

)2

x
(s,t)†
ABω x

(s,t)
ABω

+
1

2
∂0y

(s,t)†
ωρ ∂0y

(s,t)
ωρ − µ2

2
ρ2 (J + 1)

2
y(s,t)†

ωρ y(s,t)
ωρ

+
µ2

2
J(J + 1)b(s,t)†

ω b(s,t)
ω − iµ

√

J(J + 1)∂0y
(s,t)†
ω0 b(s,t)

ω

+iψ
(s,t)†
Aωκ ∂0ψ

A(s,t)
ωκ − µκ

(

J +
3

4

)

ψ
(s,t)†
Aωκ ψA(s,t)

ωκ

]

,

Sint
R×S2 =

4π

g2
R×S2

∫
dt

µ2
tr

[

−iCω1qst ω2qtu ω3qus
∂0x

(s,t)
AB,ω1

(

b(t,u)
ω2

xAB(u,s)
ω3

− xAB(t,u)
ω2

b(u,s)
ω3

)

− 1

2
Cωq

ω1qst ω2qtu
Cωq ω3quv ω4qvs

(

b(s,t)
ω1

x
(t,u)
AB,ω2

− x
(s,t)
AB,ω1

b(t,u)
ω2

)(

b(u,v)
ω3

xAB(v,s)
ω4

− xAB(u,v)
ω3

b(v,s)
ω4

)

− µ
√

J1(J1 + 1)
(

Dω2qus ω1qst0 ωqtuρx
(s,t)
ABω1

y(t,u)
ωρ xAB(u,s)

ω2
−Dωqtu ω1qst0 ω2qusρ2

x
(s,t)
ABω1

xAB(t,u)
ω y(u,s)

ω2ρ2

)

+ Cωq
ω1qst ω3quv

Dωq ω2qtuρ2 ω4qvsρ4
x

(s,t)
ABω1

y(t,u)
ω2ρ2

xAB(u,v)
ω3

y(v,s)
ω4ρ4

− Cωq
ω1qst ω4qvs

Dωq ω2qtuρ2 ω3quvρ3
x

(s,t)
ABω1

y(t,u)
ω2ρ2

y(u,v)
ω3ρ3

xAB(v,s)
ω4

+
1

4
Cωq

ω1qst ω2qtu
Cωq ω3quv ω4qvs

(

x
(s,t)
ABω1

x
(t,u)
CDω2

− x
(s,t)
CDω1

x
(t,u)
ABω2

)(

xAB(u,v)
ω3

xCD(v,s)
ω4

− xCD(u,v)
ω3

xAB(v,s)
ω4

)

− i
(

Dωqtu ω1qstρ1 ω2qusρ2
∂0y

(s,t)
ω1ρ1

b(t,u)
ω y(u,s)

ω2ρ2
−Dω2qus ω1qstρ1 ωqtuρ∂0y

(s,t)
ω1ρ1

y(t,u)
ωρ b(u,s)

ω2

)

+ µ
√

J1(J1 + 1)
(

Dω2qus ω1qst0 ωqtuρb
(s,t)
ω1

y(t,u)
ωρ b(u,s)

ω2
−Dωqtu ω1qst0 ω2qusρ2

b(s,t)
ω1

b(t,u)
ω y(u,s)

ω2ρ2

)
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− Cωq
ω1qst ω3quv

Dωq ω2qtuρ2 ω4qvsρ4
b(s,t)
ω1

y(t,u)
ω2ρ2

b(u,v)
ω3

y(v,s)
ω4ρ4

+ Cωq
ω1qst ω4qvs

Dωq ω2qtuρ2 ω3quvρ3
b(s,t)
ω1

y(t,u)
ω2ρ2

y(u,v)
ω3ρ3

b(v,s)
ω4

+ iµρ1(J1 + 1)Eω1qstρ1 ω2qtuρ2 ω3qusρ3
y(s,t)

ω1ρ1
y(t,u)

ω2ρ2
y(u,s)

ω3ρ3

+
1

2

(

Dωq
ω1qstρ1 ω3quvρ3

Dωq ω2qtuρ2 ω4qvsρ4
−Dωq

ω1qstρ1 ω4qvsρ4
Dωq ω2qtuρ2 ω3quvρ3

)

y(s,t)
ω1ρ1

y(t,u)
ω2ρ2

y(u,v)
ω3ρ3

y(v,s)
ω4ρ4

+ Fω1qstκ1

ω2qutκ2 ωqsu
ψ

(s,t)†
Aω1κ1

b(s,u)
ω ψA(u,t)

ω2κ2
−Fω1qstκ1

ωqsuκ ω2qut
ψ

(s,t)†
Aω1κ1

ψA(s,u)
ωρ b(u,t)

ω2

+ Gω1qstκ1

ω2qutκ2 ωqsuρψ
(s,t)†
Aω1κ1

y(s,u)
ωρ ψA(u,t)

ω2κ2
− Gω1qstκ1

ωqsuκ ω2qutρ2
ψ

(s,t)†
Aωκ1

ψA(s,u)
ωκ y(u,t)

ω2ρ2

− i(−1)m1−qts+
κ1

2 FJ1−m1−qtsκ1

ω2qutκ2 ωqsu
ψ

A(t,s)
J1m1κ1

x
(s,u)
ABωψB(u,t)

ω2κ2

+ i(−1)m1−qts+
κ1

2 FJ1−m1−qtsκ1

ωqsuκ2 ω2qut
ψ

A(t,s)
J1m1κ1

ψB(s,u)
ωκ x

(u,t)
ABω2

+ i(−1)m2−qtu+
κ2

2 Fω1qstκ1

J2−m2−qtuκ2 ωqsu
ψ

(s,t)†
Aω1κ1

xAB(s,u)
ω ψ

(t,u)†
BJ2m2κ2

− i(−1)m−qus+ κ

2 Fω1qstκ1

J−m−qusκ ω2qut
ψ

(s,t)†
Aω1κ1

ψ
(u,s)†
BJmκxAB(u,t)

ω2

]

, (5.8)

where the summation over the indices that appear twice or more than twice is assumed

and we have introduced the abbreviated notations: ω represents a pair, (J,m).

Similarly, we expand the action (A.17) around the vacuum (2.36). We make a substi-

tution ~Y → ~̂Y + ~Y in (A.17), where Ŷi = −µLi and Li is given in (2.36). The result is

SPW = Sfree
PW + Sint

PW ,

Sfree
PW =

1

g2
PW

∫
dt

µ2

∑

s,t

tr

(

1

2
∂0X

AB(t,s)∂0X
(s,t)
AB +

µ2

2
~L ◦ XAB(t,s) · ~L ◦ X

(s,t)
AB

− µ2

8
XAB(t,s)X

(s,t)
AB +

1

2
∂0

~Y (t,s) · ∂0
~Y (s,t)

− 1

2
(iµ~L ◦ ×~Y (t,s) + µ~Y (t,s)) · (iµ~L ◦ ×~Y (s,t) + µ~Y (s,t))

− µ2

2
~L ◦ A

(t,s)
0 · ~L ◦ A

(s,t)
0 − iµ∂0

~Y (t,s) · ~L ◦ A
(s,t)
0

+ iψ
†(t,s)
A ∂0ψ

A(s,t) − µψ
†(t,s)
A ~σ · ~L ◦ ψA(s,t) − 3µ

4
ψ
†(t,s)
A ψA(s,t)

)

,

Sint
PW =

1

g2
PW

∫
dt

µ2

∑

s,t

tr

(

−i∂0X
(t,s)
AB [A0,X

AB ](s,t) − 1

2
[A0,XAB ](t,s)[A0,X

AB ](s,t)

− µ~L ◦ X
(t,s)
AB · [~Y ,XAB ](s,t) +

1

2
[~Y ,XAB ](t,s) · [~Y ,XAB ](s,t)

+
1

4
[XAB ,XCD](t,s)[XAB ,XCD](s,t) − 1

2
[~Y ,A0]

(t,s) · [~Y ,A0]
(s,t)

− i(∂0
~Y )(t,s) · [A0, ~Y ](s,t) − µ[A0, ~Y ](t,s) · (~L ◦ A0)

(s,t)

+ i(iµ~L ◦ ×~Y (t,s) + µ~Y (t,s)) · (~Y × ~Y )(s,t)

+
1

2
(~Y × ~Y )(t,s) · (~Y × ~Y )(s,t)

+ ψ
†(t,s)
A [A0, ψ

A](s,t) + ψ
†(t,s)
A ~σ · [~Y , ψA](s,t)
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− ψAT (t,s)σ2[XAB , ψB ](s,t) + ψ
†(t,s)
A σ2[XAB , ψ∗

B ](s,t)

)

. (5.9)

Here the suffix (s, t) stands for the (s, t) ‘large’ block of an N̂ × N̂ matrix, which is an

Ns(2js + 1) × Nt(2jt + 1) rectangular matrix, and s, t run from 1 to T . The reader would

notice resemblance between (5.5) and (5.9). We make a mode expansion analogous to (5.6):

A
(s,t)
0 =

js+jt∑

J=|js−jt|

J∑

m=−J

b
(s,t)
Jm ⊗ ŶJm(jsjt), X

(s,t)
AB =

js+jt∑

J=|js−jt|

J∑

m=−J

x
(s,t)
ABJm ⊗ ŶJm(jsjt),

ψA(s,t) =
∑

κ=±1

js+jt∑

Ũ=|js−jt|

U∑

m=−U

ψ
A(s,t)
Jmκ ⊗ Ŷ κ

Jm(jsjt)

=

js+jt∑

J=|js−jt|

J+ 1

2∑

m=−J− 1

2

ψ
A(s,t)
Jm1 ⊗ Ŷ 1

Jm(jsjt)

js+jt− 1

2∑

J=|js−jt|− 1

2

J∑

m=−J

ψ
A(s,t)
Jm−1 ⊗ Ŷ −1

Jm(jsjt)
,

~Y (s,t) =
1∑

ρ=−1

js+jt∑

Q̃=|js−jt|

Q
∑

m=−Q

y
(s,t)
Jmρ ⊗

~̂
Y ρ

Jm(jsjt)

=

js+jt∑

J=|js−jt|

J+1∑

m=−J−1

y
(s,t)
Jm1 ⊗

~̂
Y 1

Jm(jsjt)
+

js+jt∑

J=|js−jt|

J∑

m=−J

y
(s,t)
Jm0 ⊗

~̂
Y 0

Jm(jsjt)

+

js+jt−1
∑

J=|js−jt|−1

J∑

m=−J

y
(s,t)
Jm−1 ⊗

~̂
Y −1

Jm(jsjt)
, (5.10)

In the above expressions, the both sides are Ns(2js + 1) × Nt(2jt + 1) matrices and the

modes in the righthand sides such as x
(s,t)
ABJm are Ns × Nt matrices. Due to (4.65), (5.7)

also holds for this case.

By substituting (5.10) into (5.9) and using (4.64), (4.66) and (4.67), we obtain the

mode-expanded form of the theory around the vacuum (2.36). By setting

4π

g2
R×S2

=
N0

g2
PW

(5.11)

and

qst = js − jt, (5.12)

it is easy to see that the free part completely coincides with Sfree
R×S2 in (5.8) while the

interaction part is obtained by attaching the hat to the vertex coefficients in Sint
R×S2 and

replacing qst in the vertex coefficients with (jsjt). As seen in section 4.3, the vertex coeffi-

cients with the hat reduce to the vertex coefficients with the identification q = j− j′ in the

N0 → ∞ limit. Thus, in the N0 → ∞ limit, the interaction part also coincides with Sint
R×S2

in (5.8). Furthermore, the relation (5.12) is equivalent to (5.1), and the relation (5.11) is

consistent with (3.9). Thus we have completed the proof of the prediction 1).
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5.2 Topologically nontrivial configurations on fuzzy spheres

In this subsection, we comment on a relation of our results in the previous subsection with

the works [19, 20].

The authors of [19, 20] considered a configuration

Yi = −µLi = −µ

(

L
[j1]
i 0

0 L
[j2]
i

)

(5.13)

as a topologically nontrivial gauge configuration, where ζ1 − ζ2 = 2α (2j1 + 1 = N0 +

ζ1, 2j2 +1 = N0 + ζ2) with α an integer. They introduced the topological index on a fuzzy

sphere which can be defined for the configuration (5.13). Their topological index for (5.13)

is equal to 1
2 |ζ1 − ζ2| = |α|, and they claimed that it coincides with the winding number

π2(SU(2)/U(1)) in the continuum limit (N0 → ∞ limit). Actually, in the case in which

α = 1, they directly obtained from (5.13) the ’t Hooft-Polyakov monopole solution, which

has the winding number one.

According to our result in the previous subsection, the vacuum configuration of

SYMR×S2 corresponding to (5.13) in the N0 → ∞ limit is

Φ̂ =
µ

2

(

α 0

0 −α

)

,

Â1 = 0,

Â2 =

{

tan θ
2 Φ̂ in region I

− cot θ
2 Φ̂ in region II

, (5.14)

where we have extracted the SU(2) part separating the decoupled U(1) part. Namely, for

generic α, we found the gauge configuration on S2 to which (5.13) reduces in the N0 → ∞
limit. In the following, we check a consistency that the configuration (5.14) has the winding

number |α|.
We define a gauge invariant quantity by

Fa′b′ = Tr(Φ̃Fa′b′ − Φ̃[Da′Φ̃,Db′Φ̃])

= Tr(∇a′(Φ̃Ab′) −∇b′(Φ̃Aa′) − Φ̃[∇a′Φ̃,∇b′Φ̃]), (5.15)

where

Φ̃ =
Φ√

2TrΦ2
. (5.16)

Then the topological charge is given by

Q =
1

8π

∫

dθdφ sin θF12 (5.17)

Actually, for configurations where fa′b′ = Tr(∇a′(Φ̃Ab′) − ∇b′(Φ̃Aa′)) is total derivative,

(5.17) reduces to

Q = − 1

8π

∫

dθdφ sin θTr(Φ̃[∇1Φ̃,∇2Φ̃]), (5.18)
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which is the winding number π2(SU(2)/U(1)). For the configuration (5.14), fa′b′ is not

total derivative while Tr(Φ̃[∇a′Φ̃,∇b′Φ̃]) vanishes. Q is evaluated from (5.17) as Q =

|α|. One can also obtain the same value for Q from (5.18) by applying a singular gauge

transformation to (5.14). In the region II, it takes the form

V =

(

cos θ
2e−iαφ sin θ

2

− sin θ
2 cos θ

2eiαφ

)

. (5.19)

The resultant gauge transformed configuration is

Φ̂ → V †Φ̂V =
µα

2

(

cos θ sin θeiαφ

sin θe−iαφ − cos θ

)

,

Â1 → V †Â1V + iV †∇1V =
iµ

2

(

0 eiαφ

−e−iαφ 0

)

,

Â2 → V †Â2V + iV †∇2V =
µα

2

(

sin θ − cos θeiαφ

− cos θe−iαφ − sin θ

)

. (5.20)

In the region I, the same configuration of the fields are obtained by the gauge transformation

VI→IIV , where VI→II is given in (2.30). Note that the single-valuedness of V and the gauge

transformed fields requires α to be an integer. For the gauge transformed configuration

(5.20), fa′b′ vanishes and (5.18) indeed gives Q = |α|. Thus, for the configuration (5.14)

with generic α, |α| is interpreted as the winding number. For α = ±1, it is easy to check that

(5.20) is nothing but the ’t Hooft-Polyakov monopole solution, which is smooth everywhere

on S2. For α 6= ±1, although the gauge fields in (5.20) are not smooth everywhere, Φ is

smooth everywhere and Q is given by (5.18).

When ζ1 − ζ2 in (5.13) is an odd integer, one can also consider the corresponding

configuration on S2 (5.14) in which 2α is equal to the odd integer ζ1 − ζ2. This configu-

ration indeed gives Q = |α| which is a half odd integer. However, in this case, the gauge

transformation (5.19) does not exist, so that one cannot interpret this Q as the winding

number.

6. N = 4 SYM on R × S3/Zk vs 2 + 1 SYM on R × S2

6.1 Embedding of SYMR×S3/Zk
into SYMR×S2

In this subsection, we prove the prediction 2) for the trivial vacuum of SYMR×S3/Zk
.

According to the prediction 2), the theory around the trivial vacuum of SYMR×S3/Zk
with

U(N) gauge group is equivalent to the theory around the vacuum (3.11) of SYMR×S2 with

the relation (3.10) if a single period is extracted after the periodicity is imposed.

In (5.5), by setting αs = sk, Ns = N and making s run from −∞ to ∞, we obtain the

theory around the vacuum (3.11) of SYMR×S2 . Then, the monopole charge qst takes the

form

qst =
k

2
(s − t), (6.1)
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which depends only on s− t. This fact enables us to impose the following condition on the

blocks of the fields in (5.5):

X(s+1,t+1) = X(s,t), A
(s+1,t+1)
0 = A

(s,t)
0 ,

~Y (s+1,t+1) = ~Y (s,t), ψA(s+1,t+1) = ψA(s,t). (6.2)

Namely, the (s, t) blocks of the fields depends only on s − t. It is natural to consider that

this condition corresponds to the periodicity on the gravity side. We show below that this

is indeed the case.

The condition for the modes of these fields follows from (6.2):

x
(s+1,t+1)
ABJm = x

(s,t)
ABJm, b

(s+1,t+1)
Jm = b

(s,t)
Jm ,

y
(s+1,t+1)
Jmρ = y

(s,t)
Jmρ, ψ

A(s,t)
Jmκ = ψ

A(s,t)
Jmqκ . (6.3)

This condition allows us to rewrite the modes as

x
(s,t)
ABJm = xABJmqst , b

(s,t)
Jm = bJmqst ,

y
(s,t)
Jmρ = yJmqstρ, ψ

A(s,t)
Jmκ = ψA

Jmqstκ, (6.4)

Note that every mode is an N × N matrix.

By using (6.1) and (6.4), we rewrite (5.8). Here we show calculation of some terms in

(5.8) as examples. We first consider in Sfree
R×S2

∑

s,t

∑

J≥|qst|

J∑

m=−J

(

J +
1

2

)2

x
(s,t)†
ABJmx

(s,t)
ABJm. (6.5)

We set s − t = n, s = l so that n, l take integers. We can rewrite (6.5) as

∑

l

∑

n

∑

J≥| k
2
n|

J∑

m=−J

(

J +
1

2

)2

xAB†
Jmk

2
n
xAB

Jmk
2
n
. (6.6)

Moreover, by setting k
2n = m̃, we obtain

∑

l

∞∑

J=0

J∑

m=−J

J∑

m̃=−J

∣
∣
∣
∣
∣
m̃∈ k

2
Z

(

J +
1

2

)2

xAB†
Jmm̃xAB

Jmm̃. (6.7)

We next consider in Sint
R×S2

∑

s,t,u

∑

J1≥|qst|,m1

∑

J2≥|qtu|,m2

∑

J3≥|qus|,m3

CJ1m1qst J2m2qtu J3m3qus∂0xABJ1m1qst(bJ2m2qtuxAB
J3m3qus

− xAB
J2m2qtu

bJ3m3qus). (6.8)

In (6.8), we set s− t = n, t−u = p, t = l in the first term and s− t = n, u−s = p, s = l in

the second term, so that n, p, l take integers. We also make exchanges for dummy variables

in the second term as J2 ↔ J3, m2 ↔ m3. Then we can rewrite (6.8) as
∑

l,n,p

∑

J1≥| k
2
n|,m1

∑

J2≥| k
2
p|,m2

(6.9)
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∑

J3≥| k
2
(n+p)|,m3

CJ1m1
k
2
n J2m2

k
2
p J3m3

k
2
(−n−p)∂0xABJ1m1

k
2
n[bJ2m2

k
2
p, x

AB
J3m3

k
2
(−n−p)

].

(6.10)

We further set k
2n = m̃1,

k
2p = m̃2,

k
2 (−n − p) = m̃3, and obtain

∑

l

∞∑

J1=0

J1∑

m1,m̃1=−J1

∞∑

J2=0

J2∑

m2,m̃2=−J2

∞∑

J3=0

J3∑

m3,m̃3=−J3

∣
∣
∣
∣
∣
∣
m̃1,m̃2,m̃3∈ k

2
Z

CJ1m1m̃1 J2m2m̃2 J3m3m̃3
∂0xABJ1m1m̃1

[bJ2m2m̃2
, xAB

J3m3m̃3
]. (6.11)

We can easily rewrite the other terms in (5.8) in the same way. There appears in common

the overall factor
∑

l in all the terms of the rewritten form of (5.8).

In appendix G, we give the mode expansion of the theory around the trivial vacuum of

SYMR×S3/Zk
(G.1), which we obtained in our previous publication [31]. In the rewritten

form of (5.8) obtained above, we make the following identifications

bJmm̃ = BJmm̃, yJmm̃ρ = AJmm̃ρ,

xAB
Jmm̃ = XAB

Jmm̃, ψA
Jmm̃κ = ΨA

Jmm̃κ (6.12)

and input the relation (3.10). Moreover, we divide this rewritten form by the overall factor
∑

l. This procedure corresponds to extracting a single period. Then, it is easy to see that

this rewritten form of (5.8) coincides with (G.1).3 Thus we have completed the proof of

the prediction 2) for the trivial vacuum of SYMR×S3/Zk
.

The configuration (3.11), the condition (6.2) and the procedure of dividing by
∑

l

physically mean that a circle with the radius∼ k is constructed in the Φ direction and

the (s, t) block of the fields is interpreted as the winding mode around the circle with the

winding number s− t. We have reinterpreted the winding number s− t as the Kaluza-Klein

momentum k
2 (s− t) on a circle with the radius∼ 1

k . This is similar to Taylor’s prescription

for the compactification (the T-duality) in matrix models [8]. The difference between our

prescription and Taylor’s is the existence of the nontrivial gauge fields in (3.11), which

makes a nontrivial fibration of the circle over S2 rather than a direct product S2 × S1 so

that S3/Zk is realized.

6.2 S3 from three matrices

Combining the result in section 5.1 with that in section 6.1 leads us to conclude that

the trivial vacuum of SYMR×S3/Zk
with gauge group U(N) is embedded in PWMM. The

3More precisely, the terms proportional to µ differ in signature. However, this difference can be com-

pensated by the parity transformation, so that it does not matter.
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Figure 6: S3/Zk is realized through a stack of fuzzy spheres. Each circle represents N coincident

fuzzy spheres.

corresponding vacuum configuration of PWMM is Yi = −µLi, where

Li =

































· · ·
N

︷

︸︸

︷

L
[js−1]
i · · ·

L
[js−1]
i

N

︷

︸︸

︷

L
[js]
i · · ·

L
[js]
i

N

︷

︸︸

︷

L
[js+1]
i · · ·

L
[js+1]
i

· · ·

































(6.13)

with 2js + 1 = N0 + ks. s runs from −∞ to ∞ and the following periodicity for the

fluctuations of the fields around the vacuum (6.13) is imposed:

~Y (s+1,t+1) = ~Y (s,t), X(s+1,t+1)
m = X(s,t)

m , λ(s+1,t+1) = λ(s,t). (6.14)

The vacuum (6.13) is interpreted as a stack of infinitely many sets of N coincident fuzzy

spheres (See figure 6 ). Note that the N0 → ∞ limit must be taken from the beginning in

order for the configuration (6.13) to be realized.

It is interesting that S3/Zk is realized by the three matrices, Y1, Y2, Y3. It is well-

known that fuzzy sphere is realized by three matrices through the SU(2) algebra and in

the continuum limit an ordinary S2 is realized with one of three directions remained on S2

as a Higgs field. In the present case, the Higgs field is utilized to make the U(1) bundle on

S2. In particular, in the k = 1 case, one realizes S3 by the three matrices and obtains from

PWMM N = 4 SYM on R×S3, which is important in the AdS/CFT context, namely, dual
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to AdS5 × S5 in the global coordinates. In this case, the SU(2|4) symmetry is enhanced

to the SU(2, 2|4) symmetry.

7. Summary and outlook

In this paper, we show that every vacuum of SYMR×S2 is embedded in PWMM and the

trivial vacuum of SYMR×S3/Zk
is embedded in SYMR×S2 . This is predicted from the

gravity duals through Lin-Maldacena’s method. Our results serve as a nontrivial check

of the gauge/gravity correspondence for the theories with SU(2|4) symmetry. As by-

products, we reveal the relationships among the spherical harmonics on S3, the monopole

harmonics and the fuzzy sphere harmonics, and extend an extension of the compactification

(T-duality) in matrix models a la Taylor to that on spheres.

We treated only embedding of the trivial vacuum of SYMR×S3/Zk
into SYMR×S2 .

Indeed, we have the vacuum configurations in SYMR×S2 that would give the theories

around the nontrivial vacua of SYMR×S3/Zk
. It is important to prove the prediction 2) for

the nontrivial vacua.

It is interesting to extend the T-duality in matrix models in this paper, which realizes

S3/Zk as an S1 fibration over S2, to other fiber bundles and to obtain a general recipe for

such T-duality in matrix models.

SYMR×S3/Zk
with k = 1 is nothing but N = 4 SYM on R × S3, which has the unique

trivial vacuum and whose symmetry group is enhanced to SU(2, 2|4). The gravity dual of

this theory is AdS5 × S5. Hence as mentioned in section 6.2, our results tell that N = 4

SYM on R × S3 which is a gauge theory in a typical example of the AdS/CFT correspon-

dence is embedded in PWMM. However, this does not mean that we have obtained a matrix

model that regularizes N = 4 SYM on R × S3 preserving gauge symmetry and supersym-

metry and in principle enables us to perform a numerical simulation for the AdS/CFT

correspondence. Indeed, in the T-duality, we need to consider matrices with infinite size.

Presumably, by referring to the work [43], we can make the size of matrices finite with a

part of supersymmetry preserved and obtain a lattice gauge theory with few parameters

to be fine-tuned for N = 4 SYM on R × S3.

We hope to report progress in the above projects in the near future.

Note added. While we are writing the manuscript, we are informed that Aoki et al. are

preparing for a publication [44], which has some overlap with section 4.3 of the present

paper.
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A. Some conventions

In this appendix, we describe some conventions which we follow in the present paper.

We use the following metric for R × S3:

ds2
R×S3 = −dt2 +

1

µ2
(dθ2 + sin2 θdφ2 + (dψ + cos θdφ)2), (A.1)

where 0 ≤ θ ≤ π, 0 ≤ φ < 2π, 0 ≤ ψ < 4π, and the radius of S3 is 2
µ . The nonvanishing

components of the vierbeins and the spin connections are

e1
θ = µ−1, e2

φ = µ−1, e3
φ = µ−1 cos θ, e3

ψ = µ−1,

ω12 = −ω21 = −1

2
cos θdφ +

1

2
dψ, ω23 = −ω32 = −1

2
dθ, ω31 = −ω13 = −1

2
sin θdφ.

(A.2)

We use the following metric for R × S2:

ds2
R×S2 = −dt2 +

1

µ2
(dθ2 + sin2 θdφ2). (A.3)

Here the radius of S2 is 1
µ . The nonvanishing components of the dreibeins and the spin

connections are

b1
θ = µ−1, b2

φ = µ−1 sin θ, k12 = −k21 = − cos θdφ. (A.4)

It is convenient for the mode expansions to rewrite the actions in the SU(4) symmetric

form. The 10-dimensional Lorentz group has been decomposed as SO(9, 1) ⊃ SO(3, 1) ×
SO(6). We identify SO(6) with SU(4). We use A,B = 1, 2, 3, 4 as the indices of 4 in

SU(4) while we have used m,n = 4, · · · , 9 as the indices of 6 in SO(6). The SO(6) vector,

6, corresponds to the antisymmetric tensor of 4 in SU(4). The SO(6) and SU(4) basis are

related as

Xi4 =
1

2
(Xi+3 + iXi+6) (i = 1, 2, 3),

XAB = −XBA, XAB = −XBA = X†
AB , XAB =

1

2
εABCDXCD. (A.5)

Similar identities hold for the gamma matrices:

Γi4 =
1

2
(Γi+3 − iΓi+6), etc. (A.6)

The 10-dimensional gamma matrices are decomposed as

Γa = γa ⊗ 18, ΓAB = γ5 ⊗
(

0 −ρ̃AB

ρAB 0

)

= −ΓBA, (A.7)
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where γa is the 4-dimensional gamma matrix, satisfying {γa, γb} = 2ηab, and γ5 = iγ0γ1 ×
γ2γ3. ΓAB satisfies {ΓAB ,ΓCD} = εABCD, and ρAB and ρ̃AB are defined by

(ρAB)CD = δA
CδB

D − δA
DδB

C , (ρ̃AB)CD = εABCD. (A.8)

The charge conjugation matrix and the chirality matrix are given by

C10 = C4 ⊗
(

0 14

14 0

)

, Γ11 = Γ0 · · ·Γ9 = γ5 ⊗
(

14 0

0 −14

)

, (A.9)

where (Γa,m)T = −C−1
10 Γa,mC10 and C4 is the charge conjugation matrix in 4 dimensions.

The Majorana-Weyl spinor in 10 dimensions is decomposed as

λ = Γ11λ =

(

λA
+

λ−A

)

, (A.10)

where λ−A is the charge conjugation of λA
+:

λ−A = (λA
+)c = C4(λ̄+A)T , γ5λ± = ±λ±. (A.11)

We further fix the forms of 4-dimensional gamma matrices:

γa =

(

0 iσa

iσ̄a 0

)

, (A.12)

where σ0 = −12 and σi (i = 1, 2, 3) are the Pauli matrices. σ̄0 = σ0 and σ̄i = −σi. In

this convention,

γ5 =

(

12 0

0 −12

)

, C4 =

(

−σ2 0

0 σ2

)

. (A.13)

We introduce a two-component spinor:

λA
+ =

(

ψA

0

)

. (A.14)

Using the SU(4) symmetric notation, one can rewrite the actions (2.1), (2.21) and (2.22)

as follows:

SR×S3 =
1

g2
R×S3

∫

dt
dΩ3

(µ/2)3
Tr

(

−1

4
FabF

ab − 1

2
DaXABDaXAB − 1

2
XABXAB

+iψ†
AD0ψ

A + iψ†
AσiDiψ

A + ψ†
Aσ2[XAB , (ψ†

B)T ]

−ψAT σ2[XAB , ψB ] +
1

4
[XAB ,XCD][XAB ,XCD]

)

,

(A.15)
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SR×S2 =
1

g2
R×S2

∫

dt
dΩ2

µ2
Tr

(
1

2
(D0

~Y − iµ~L(0)A0)
2 − 1

2
~Z2 +

1

2
D0XABD0X

AB

+
1

2
~LXAB · ~LXAB − µ2

8
XABXAB +

1

4
[XAB ,XCD][XAB ,XCD]

+ iψ†
AD0ψ

A − ψ†
A~σ · ~LψA − 3µ

4
ψ†

AψA + ψ†
Aσ2[XAB , (ψ†

B)T ]

− ψAT σ2[XAB , ψB ]

)

, (A.16)

SPW =
1

g2
PW

∫
dt

µ2
Tr

(
1

2
(D0Yi)

2 − 1

2
(µYi −

i

2
εijk[Yj, Yk])

2 +
1

2
D0XABD0X

AB

− µ2

8
XABXAB +

1

2
[Yi,XAB ][Yi,X

AB ] +
1

4
[XAB ,XCD][XAB ,XCD]

+ iψ†
AD0ψ

A − 3µ

4
ψ†

AψA + ψ†
Aσi[Yi, ψ

A] + ψ†
Aσ2[XAB , (ψ†

B)T ]

− ψAT σ2[XAB , ψB ]

)

. (A.17)

B. The plane wave matrix model

In this appendix, we give the relationship between the action (2.22) and the conventional

form of the action of the plane wave matrix model in the literature. We introduce another

representation of the 10-dimensional gamma matrices as follows:

Γ0 = 116 ⊗ (−i)σ2, ΓM̂ = γM̂ ⊗ σ3, (B.1)

where γM̂ is the SO(9) gamma matrix, which is a 16 × 16 real symmetric matrix, and

M̂ = (i,m). In this representation, the charge conjugation matrix is C10 = Γ0, and

Γ11 = 116 ⊗ σ1. Then the Majorana-Weyl spinor λ is represented as

λ =
1√
2

(

Ψ

Ψ

)

, (B.2)

where Ψ is a real 16-components spinor. We make a redefinition, Y i → Xi. We also

rescale the fields, the coupling constant and the time as follows:

A0 → −3µgA0, XM̂ → −µgXM̂ , Ψ → −
√

3µ
3

2 gΨ,

g →
√

3µg, t → 3µt. (B.3)

We finally obtain from (2.22)

SPWMM =

∫

dt Tr

(
1

2
D0X

M̂D0X
M̂ − 1

18
XiXi − 1

72
XmXm − ig

18
εijkX

i[Xj ,Xk]

+
g2

36
[XM̂ ,XN̂ ]2 +

i

2
Ψ†D0Ψ − i

8
Ψ†γ123Ψ +

g

6
Ψ†γM̂ [XM̂ ,Ψ]

)

,(B.4)

where D0 = ∂t + ig[A0, ]. This is the conventional form of the action of the plane wave

matrix model seen in the literature.
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C. Supersymmetry transformations

In this appendix, we give the supersymmetry transformation rules for the theories with

SU(2|4) symmetry.

First, the action of PWMM (2.22) is invariant under the following supersymmetry

transformations:

δA0 = −iη̄Γ0λ,

δ~Y = −iη̄~Γλ,

δXm = −iη̄Γmλ,

δλ = D0Y
iΓ0iη + D0X

mΓ0mη + µY iΓi123η − µ

2
XmΓm123η

− i

2
[Y i, Y j]Γijη − i[Y i,Xm]Γimη − i

2
[Xm,Xn]Γmnη, (C.1)

where the parameter η is a 10-dimensional Majorana-Weyl spinor which satisfies ∂0η =

−µ
4 Γ0123η. Then, the theory has 16 supercharges.

Next, the action of SYMR×S2 (2.21) is invariant under the following transformations:

δA0 = −iη̄Γ0λ,

δ~Y = −iη̄~Γλ,

δXm = −iη̄Γmλ,

δλ = D0Y
iΓ0iη + D0X

mΓ0mη − µ

2
XmΓm123η + iLiX

mΓim

− i

2
[Xm,Xn]Γmnη +

1

2
εijkZiΓ

jkη − iµL
(0)
i A0Γ

0iη. (C.2)

Again, η is a 10-dimensional Majorana-Weyl spinor which satisfies ∂0η = −µ
4Γ0123η. The

theory also has 16 supercharges.

Finally, the transformation rule for the original N = 4 SYM on R × S3 (2.1) is as

follows:

δAa = iλ̄Γaε,

δXm = iλ̄Γmε,

δλ =

[
1

2
FabΓ

ab + DaXmΓam − 1

2
XmΓma∇a −

i

2
[Xm,Xn]Γmn

]

ε. (C.3)

In this case, the parameter ε is a conformal Killing spinor on R×S3. In order to write down

the conformal Killing spinor equation, we decompose ε into the 4-dimensional Majorana-

Weyl spinors as

ε =

(

εA
+

ε−A

)

, (C.4)

where εA
+ and ε−A are the 4-dimensional Majorana-Weyl spinors, and ε−A is the charge

conjugation of εA
+ (see Appendix A). Then, the conformal Killing spinor equation on R×S3

is written as

∇aε
A
+ = ± i

2
γaγ

0εA
+, γ5ε

A
+ = εA

+. (C.5)
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A general solution of above equation has four real degrees of freedom for each sign, and

there are four SU(4) indices, so that the original 10-dimensional parameter ε possess 32

real degrees of freedom. In SYMR×S3/Zk
, there remain only supersymmetries caused by the

conformal Killing spinors that satisfy the lower sign of (C.5), so that only 16 supercharges

survive.

D. Useful formulae for representations of SU(2)

In this appendix, we gather some useful formulae concerning the representations of SU(2),

most of which are found in [42]. The relationship between the Clebsch-Gordan coefficient

and the 3 − j symbol is

(

J1 J2 J3

m1 m2 m3

)

= (−1)J3+m3+2J1
1√

2J3 + 1
CJ3m3

J1 −m1 J2 −m2
. (D.1)

The Clebsch-Gordan coefficient possesses the following symmetries:

CJ3m3

J1m1 J2m2
= (−1)m1+m2−m3CJ3m3

J2m2 J1m1

= (−1)J1−m1

√
2m3 + 1

2m2 + 1
CJ2 −m2

J1m1 J3 −m3
= (−1)J1−m1

√
2m3 + 1

2m2 + 1
CJ2 m2

J3m3 J1 −m1

= (−1)J2+m2

√
2m3 + 1

2m1 + 1
CJ1 −m1

J3 −m3 J2m2
= (−1)J2+m2

√
2m3 + 1

2m1 + 1
CJ1 m1

J2 −m2 J3m3
,

CJ3m3

J1m1 J2m2
= (−1)m1+m2 −m3CJ3 −m3

J1 −m1 J2 −m2
. (D.2)

The recursion relation for the Clebsch-Gordan coefficient is

√

(c ± γ)(c ∓ γ + 1)Ccγ∓1
aα bβ =

=
√

(a ∓ α)(a ± α + 1)Ccγ
aα±1 bβ +

√

(b ∓ β)(b ± β + 1)Ccγ
aα bβ±1. (D.3)

In sections 4, we frequently use a summation formula for the Clebsch-Gordan coefficient,

∑

m1m2

CJ3m3

J1m1 J2m2
C

J ′

3
m′

3

J1m1 J2m2
= δJ3J ′

3
δm3m′

3
, (D.4)

∑

αβδ

Ccγ
aα bβCeε

dδ bβCdδ
aα fϕ = (−1)b+c+d+f

√

(2c + 1)(2d + 1)Ceε
cγ fϕ

{

a b c

e f d

}

, (D.5)

∑

βγεϕ

Caα
bβ cγCdδ

eε fϕCbβ
eε gηC

cγ
fϕ jµ

=
∑

kκ

√

(2b + 1)(2c + 1)(2d + 1)(2k + 1)Ckκ
gη jµCaα

dδ kκ







a b c

d e f

k g j







. (D.6)

In section 4, the following identity is often used:

〈Jm|eiθJ1 |Jn〉∗ = (−1)−m+n〈J −m|eiθJ1|J −n〉. (D.7)
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In section 5, we use a formula for the asymptotic relations between the 6 − j symbols and

the 3 − j symbols. If R À 1, one obtains
{

a b c

d + R e + R f + R

}

≈ (−1)a+b+c+2(d+e+f)

√
2R

(

a b c

e − f f − d d − e

)

. (D.8)

E. Vertex coefficients

In this appendix, we give expressions for the vertex coefficients we defined in section 4.

These expressions are obtained by using the formula (4.15). In the following, Q ≡ J+ (1+ρ)ρ
2 ,

Q̃ ≡ J − (1−ρ)ρ
2 , U ≡ J + 1+κ

4 and Ũ ≡ J + 1−κ
4 . Suffices on these variables must be

understood appropriately.

CJ1m1m̃1

J2m2m̃2 J3m3m̃3
=

√

(2J2 + 1)(2J3 + 1)

2J1 + 1
CJ1m1

J2m2 J3m3
CJ1m̃1

J2m̃2 J3m̃3
, (E.1)

DJmm̃
J1m1m̃1ρ1 J2m2m̃2ρ2

= (−1)
ρ1+ρ2

2
+1

√

3(2J1 + 1)(2J1 + 2ρ2
1 + 1)(2J2 + 1)(2J2 + 2ρ2

2 + 1)

×







Q1 Q̃1 1

Q2 Q̃2 1

J J 0







CJm
Q1m1 Q2m2

CJm̃
Q̃1m̃1 Q̃2m̃2

, (E.2)

EJ1m1m̃1ρ1 J2m2m̃2ρ2 J3m3m̃3ρ3

=
√

6(2J1 + 1)(2J1 + 2ρ2
1 + 1)(2J2 + 1)(2J2 + 2ρ2

2 + 1)(2J3 + 1)(2J3 + 2ρ2
3 + 1)

× (−1)−
ρ1+ρ2+ρ3+1

2







Q1 Q̃1 1

Q2 Q̃2 1

Q3 Q̃3 1







(

Q1 Q2 Q3

m1 m2 m3

)(

Q̃1 Q̃2 Q̃3

m̃1 m̃2 m̃3

)

, (E.3)

FJ1m1m̃1κ1

J2m2m̃2κ2 Jmm̃ =
√

2(2J + 1)2(2J2 + 1)(2J2 + 2)







U1 Ũ1
1
2

U2 Ũ2
1
2

J J 0







CU1m1

U2m2 JmCŨ1m̃1

Ũ2m̃2 Jm̃
,

(E.4)

GJ1m1m̃1κ1

J2m2m̃2κ2 Jmm̃ρ = (−1)
ρ
2

√

6(2J2 + 1)(2J2 + 2)(2J + 1)(2J + 2ρ2 + 1)

×







U1 Ũ1
1
2

U2 Ũ2
1
2

Q Q̃ 1







CU1m1

U2m2 QmCŨ1m̃1

Ũ2m̃2 Q̃m̃
. (E.5)

F. Vertex coefficients of the fuzzy sphere harmonics

In this appendix, we give expressions for the traces of various three fuzzy sphere harmonics

which are defined in section 4.3.

ĈJ1m1(j′j)
J2m2(j′j′′) J3m3(j′′j)

= (−1)J1+2J3−ζ−ζ′−ζ′′+j−j′
√

N0(2J2 + 1)(2J3 + 1)CJ1m1

J2m2 J3m3

{

J1 J2 J3

j′′ j j′

}

, (F.1)
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D̂Jm(j′j)
J1m1(j′j′′)ρ1 J2m2(j′′j)ρ2

=
√

3N0(2J + 1)(2J1 + 1)(2J1 + 2ρ2
1 + 1)(2J2 + 1)(2J2 + 2ρ2

2 + 1)

× (−1)
ρ1+ρ2

2
+1+J+2Q̃2−ζ−ζ′−ζ′′+j−j′







Q1 Q̃1 1

Q2 Q̃2 1

J J 0







CJm
Q1m1 Q2m2

{

J Q̃1 Q̃2

j′′ j j′

}

, (F.2)

ÊJ1m1(jj′)ρ1 J2m2(j′j′′)ρ2 J3m3(j′′j)ρ3

=
√

6N0(2J1 + 1)(2J1 + 2ρ2
1 + 1)(2J2 + 1)(2J2 + 2ρ2

2 + 1)(2J3 + 1)(2J3 + 2ρ2
3 + 1)

× (−1)−
ρ1+ρ2+ρ3+1

2
−Q̃1−Q̃2−Q̃3−ζ−ζ′−ζ′′







Q1 Q̃1 1

Q2 Q̃2 1

Q3 Q̃3 1







(

Q1 Q2 Q3

m1 m2 m3

){

Q̃1 Q̃2 Q̃3

j′′ j j′

}

,

(F.3)

F̂J1m1(j′j)κ1

J2m2(j′j′′)κ2 Jm(j′′j)

=

√

2N0(2Ũ + 1)(2J + 1)2(2J2 + 1)(2J2 + 2)

× (−1)Ũ1+2J−ζ−ζ′−ζ′′+j−j′







U1 Ũ1
1
2

U2 Ũ2
1
2

J J 0







CU1m1

U2m2 Jm

{

Ũ1 Ũ2 J

j′′ j j′

}

, (F.4)

ĜJ1m1(j′j)κ1

J2m2(j′j′′)κ2 Jm(j′′j)ρ

=

√

6N0(2Ũ1 + 1)(2J2 + 1)(2J2 + 2)(2J + 1)(2J + 2ρ2 + 1)

× (−1)
ρ
2
+Ũ1+2Ũ−ζ−ζ′−ζ′′+j−j′







U1 Ũ1
1
2

U2 Ũ2
1
2

Q Q̃ 1







CU1m1

U2m2 Qm

{

Ũ1 Ũ2 Q̃

j′′ j j′

}

. (F.5)

As mentioned in section 4.3, In the N0 → ∞, these reduce to the vertex coefficients in

appendix E.

G. Mode expansion of SYMR×S3/Zk

In this appendix, we describe the mode expansion of the theory around the trivial vacuum

of SYMR×S3/Zk
, which was obtained in our previous publication [31]. The result is

SR×S3/Zk
= Sfree

R×S3/Zk
+ Sint

R×S3/Zk
,

Sfree
R×S3/Zk

=
16π2

g2
R×S3/Zk

kµ3

∫

dtTr

{
∑

Jmm̃

1

2
(∂0X

AB†
Jmm̃∂0X

AB
Jmm̃ − µ2(J +

1

2
)2XAB†

Jmm̃XAB
Jmm̃)

+

1∑

ρ=−1

∑

Jmm̃

1

2
(∂0A

†
Jmm̃ρ∂0AJmm̃ρ − µ2ρ2(J + 1)2A†

Jmm̃ρAJmm̃ρ)

+
∑

Jmm̃

(
µ2

2
J(J + 1)B†

Jmm̃BJmm̃ + iµ
√

J(J + 1)∂0A
†
Jmm̃0BJmm̃

)
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+
∑

κ=±1

∑

Jmm̃

(

iΨ†
AJmm̃κ∂0Ψ

A
Jmm̃κ + κµ(J +

3

4
)Ψ†

AJmm̃κΨA
Jmm̃κ

)}

,

Sint
R×S3/Zk

=
16π2

g2
R×S3/Zk

kµ3

∫

dtTr

{

−iCJmm̃ J1m1m̃1 J2m2m̃2
∂0X

J1m1m̃1

AB [BJmm̃,XAB
J2m2m̃2

]

−1

2
CJmm̃

J1m1m̃1 J2m2m̃2
CJmm̃ J2m3m̃3 J4m4m̃4

[BJ1m1m̃1
,XJ2m2m̃2

AB ][BJ3m3m̃3
,XAB

J4m4m̃4
])

+µ
√

J1(J1 + 1)DJ2m2m̃2 J1m1m̃10 Jmm̃ρX
J1m1m̃1

AB [AJmm̃ρ,X
AB
J2m2m̃2

]

+
1

2
CJmm̃

J1m1m̃1 J3m3m̃3
DJmm̃ J2m2m̃2ρ2 J4m4m̃4ρ4

[XJ1m1m̃1

AB , AJ2m2m̃2ρ2
]

[XAB
J3m3m̃3

, AJ4m4m̃4ρ4
]

+
1

4
CJmm̃

J1m1m̃1 J2m2m̃2
CJmm̃ J3m3m̃3 J4m4m̃4

[XJ1m1m̃1

AB ,XJ2m2m̃2

CD ][XAB
J3m3m̃3

,XCD
J4m4m̃4

]

−iDJmm̃ J1m1m̃1ρ1 J2m2m̃2ρ2
∂0AJ1m1m̃1ρ1

[BJmm̃, AJ2m2m̃2ρ2
]

−µ
√

J1(J1 + 1)DJ2m2m̃2 J1m1m̃10 Jmm̃ρBJ1m1m̃1
[AJmm̃ρ, BJ2m2m̃2

]

−1

2
CJmm̃

J1m1m̃1 J3m3m̃3
DJmm̃ J2m2m̃2ρ2 J4m4m̃4ρ4

[BJ1m1m̃1
, AJ2m2m̃2ρ2

]

[BJ3m3m̃3
, AJ4m4m̃4ρ4

]

−i
µ

2
ρ1(J1 + 1)EJ1m1m̃1ρ1 J2m2m̃2ρ2 J3m3m̃3ρ3

AJ1m1m̃1ρ1
[AJ2m2m̃2ρ2

, AJ3m3m̃3ρ3
]

+
1

4
DJmm̃

J1m1m̃1ρ1 J3m3m̃3ρ3
DJmm̃ J2m2m̃2ρ2 J4m4m̃4ρ4

[AJ1m1m̃1ρ1
, AJ2m2m̃2ρ2

]

[AJ3m3m̃3ρ3
, AJ4m4m̃4ρ4

]

+FJ1m1m̃1κ1

J2m2m̃2κ2 Jmm̃Ψ†
AJ1m1m̃1κ1

[BJmm̃,ΨA
J2m2m̃2κ2

]

+GJ1m1m̃1κ1

J2m2m̃2κ2 Jmm̃ρΨ
†
AJ1m1m̃1κ1

[AJmm̃ρ,Ψ
A
J2m2m̃2κ2

]

−i(−1)m2−m̃2+
κ2
2 FJ1m1m̃1κ1

J2−m2m̃2κ2 Jmm̃Ψ†
AJ1m1m̃1κ1

[XAB
Jmm̃,Ψ†

BJ2m2m̃2κ2
]

+i(−1)−m1+m̃1+
κ1
2 FJ1−m1m̃1κ1

J2m2m̃2κ2 Jmm̃ΨA
J1m1m̃1κ1

[XJmm̃
AB ,ΨB

J2m2m̃2κ2
]

}

, (G.1)

where the summation over the indices that appear twice or more than twice in Sint
R×S3/Zk

is assumed and m̃ only takes k
2n (n ∈ Z).
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